矩阵求导术(上)

矩阵求导的技术,在统计学、控制论、机器学习等领域有广泛的应用。鉴于我看过的一些资料或言之不详、或繁乱无绪,本文来做个科普,分作两篇,上篇讲标量对矩阵的求导术,下篇讲矩阵对矩阵的求导术。本文使用小写字母x表示标量,粗体小写字母\boldsymbol{x} 表示(列)向量,大写字母X表示矩阵。


首先来琢磨一下定义,标量f对矩阵X的导数,定义为\frac{\partial f}{\partial X} = \left[\frac{\partial f }{\partial X_{ij}}\right],即f对X逐元素求导排成与X尺寸相同的矩阵。然而,这个定义在计算中并不好用,实用上的原因是对函数较复杂的情形难以逐元素求导;哲理上的原因是逐元素求导破坏了整体性。试想,为何要将f看做矩阵X而不是各元素X_{ij}的函数呢?答案是用矩阵运算更整洁。所以在求导时不宜拆开矩阵,而是要找一个从整体出发的算法。


为此,我们来回顾,一元微积分中的导数(标量对标量的导数)与微分有联系:df = f'(x)dx;多元微积分中的梯度(标量对向量的导数)也与微分有联系:df = \sum_{i=1}^n \frac{\partial f}{\partial x_i}dx_i = \frac{\partial f}{\partial \boldsymbol{x}}^T d\boldsymbol{x} ,这里第一个等号是全微分公式,第二个等号表达了梯度与微分的联系:全微分df是梯度向量\frac{\partial f}{\partial \boldsymbol{x}}(n×1)与微分向量d\boldsymbol{x}(n×1)的内积;受此启发,我们将矩阵导数与微分建立联系:df = \sum_{i=1}^m \sum_{j=1}^n \frac{\partial f}{\partial X_{ij}}dX_{ij} = \text{tr}\left(\frac{\partial f}{\partial X}^T dX\right) 。其中tr代表迹(trace)是方阵对角线元素之和,满足性质:对尺寸相同的矩阵A,B,\text{tr}(A^TB) = \sum_{i,j}A_{ij}B_{ij},即\text{tr}(A^TB)是矩阵A,B的内积。与梯度相似,这里第一个等号是全微分公式,第二个等号表达了矩阵导数与微分的联系:全微分df是导数\frac{\partial f}{\partial X}(m×n)与微分矩阵dX(m×n)的内积。


然后来建立运算法则。回想遇到较复杂的一元函数如f = \log(2+\sin x)e^{\sqrt{x}},我们是如何求导的呢?通常不是从定义开始求极限,而是先建立了初等函数求导和四则运算、复合等法则,再来运用这些法则。故而,我们来创立常用的矩阵微分的运算法则:

  1. 加减法:d(X\pm Y) = dX \pm dY;矩阵乘法:d(XY) = (dX)Y + X dY ;转置:d(X^T) = (dX)^T;迹:d\text{tr}(X) = \text{tr}(dX)
  2. 逆:dX^{-1} = -X^{-1}dX X^{-1}。此式可在XX^{-1}=I两侧求微分来证明。
  3. 行列式:d|X| = \text{tr}(X^{\#}dX) ,其中X^{\#}表示X的伴随矩阵,在X可逆时又可以写作d|X|= |X|\text{tr}(X^{-1}dX)。此式可用Laplace展开来证明,详见张贤达《矩阵分析与应用》第279页。
  4. 逐元素乘法:d(X\odot Y) = dX\odot Y + X\odot dY\odot表示尺寸相同的矩阵X,Y逐元素相乘。
  5. 逐元素函数:d\sigma(X) = \sigma'(X)\odot dX \sigma(X) = \left[\sigma(X_{ij})\right]是逐元素标量函数运算, \sigma'(X)=[\sigma'(X_{ij})]是逐元素求导数。例如X=\left[\begin{matrix}X_{11} & X_{12} \\ X_{21} & X_{22}\end{matrix}\right], d \sin(X) = \left[\begin{matrix}\cos X_{11} dX_{11} & \cos X_{12} d X_{12}\\ \cos X_{21} d X_{21}& \cos X_{22} dX_{22}\end{matrix}\right] = \cos(X)\odot dX


我们试图利用矩阵导数与微分的联系df = \text{tr}\left(\frac{\partial f}{\partial X}^T dX\right) ,在求出左侧的微分df后,该如何写成右侧的形式并得到导数呢?这需要一些迹技巧(trace trick):

  1. 标量套上迹:a = \text{tr}(a)
  2. 转置:\mathrm{tr}(A^T) = \mathrm{tr}(A)
  3. 线性:\text{tr}(A\pm B) = \text{tr}(A)\pm \text{tr}(B)
  4. 矩阵乘法交换:\text{tr}(AB) = \text{tr}(BA),其中AB^T尺寸相同。两侧都等于\sum_{i,j}A_{ij}B_{ji}
  5. 矩阵乘法/逐元素乘法交换:\text{tr}(A^T(B\odot C)) = \text{tr}((A\odot B)^TC),其中A, B, C尺寸相同。两侧都等于\sum_{i,j}A_{ij}B_{ij}C_{ij}


观察一下可以断言,若标量函数f是矩阵X经加减乘法、逆、行列式、逐元素函数等运算构成,则使用相应的运算法则对f求微分,再使用迹技巧给df套上迹并将其它项交换至dX左侧,对照导数与微分的联系df = \text{tr}\left(\frac{\partial f}{\partial X}^T dX\right) ,即能得到导数。

特别地,若矩阵退化为向量,对照导数与微分的联系df = \frac{\partial f}{\partial \boldsymbol{x}}^T d\boldsymbol{x} ,即能得到导数。


在建立法则的最后,来谈一谈复合:假设已求得\frac{\partial f}{\partial Y},而Y是X的函数,如何求\frac{\partial f}{\partial X}呢?在微积分中有标量求导的链式法则\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} \frac{\partial y}{\partial x},但这里我们不能随意沿用标量的链式法则,因为矩阵对矩阵的导数\frac{\partial Y}{\partial X}截至目前仍是未定义的。于是我们继续追本溯源,链式法则是从何而来?源头仍然是微分。我们直接从微分入手建立复合法则:先写出df = \text{tr}\left(\frac{\partial f}{\partial Y}^T dY\right),再将dY用dX表示出来代入,并使用迹技巧将其他项交换至dX左侧,即可得到\frac{\partial f}{\partial X}

最常见的情形是Y = AXB,此时 df = \text{tr}\left(\frac{\partial f}{\partial Y}^T dY\right) = \text{tr}\left(\frac{\partial f}{\partial Y}^T AdXB\right) = \text{tr}\left(B\frac{\partial f}{\partial Y}^T AdX\right) = \text{tr}\left((A^T\frac{\partial f}{\partial Y}B^T)^T dX\right) ,可得到\frac{\partial f}{\partial X}=A^T\frac{\partial f}{\partial Y}B^T。注意这里dY = (dA)XB + AdXB + AXdB = AdXB,由于A,B是常量,dA=0,dB=0,以及我们使用矩阵乘法交换的迹技巧交换了\frac{\partial f}{\partial Y}^T AdXB


接下来演示一些算例。特别提醒要依据已经建立的运算法则来计算,不能随意套用微积分中标量导数的结论,比如认为AX对X的导数为A,这是没有根据、意义不明的。

例1:f = \boldsymbol{a}^T X\boldsymbol{b},求\frac{\partial f}{\partial X}。其中\boldsymbol{a}m×1列向量,Xm\times n矩阵,\boldsymbol{b}n×1列向量,f是标量。

解:先使用矩阵乘法法则求微分,df = d\boldsymbol{a}^TX\boldsymbol{b}+\boldsymbol{a}^TdX\boldsymbol{b}+\boldsymbol{a}^TXd\boldsymbol{b} = \boldsymbol{a}^TdX\boldsymbol{b},注意这里的\boldsymbol{a}, \boldsymbol{b}是常量,d\boldsymbol{a} = \boldsymbol{0}, d\boldsymbol{b} = \boldsymbol{0}。由于df是标量,它的迹等于自身,df = \text{tr}(df),套上迹并做矩阵乘法交换:df = \text{tr}(\boldsymbol{a}^TdX\boldsymbol{b}) = \text{tr}(\boldsymbol{b}\boldsymbol{a}^TdX)= \text{tr}((\boldsymbol{a}\boldsymbol{b}^T)^TdX),注意这里我们根据\text{tr}(AB) = \text{tr}(BA)交换了\boldsymbol{a}^TdX\boldsymbol{b}。对照导数与微分的联系df = \text{tr}\left(\frac{\partial f}{\partial X}^T dX\right),得到\frac{\partial f}{\partial X} = \boldsymbol{a}\boldsymbol{b}^T

注意:这里不能用\frac{\partial f}{\partial X} =\boldsymbol{a}^T \frac{\partial X}{\partial X}\boldsymbol{b}=?,导数与矩阵乘法的交换是不合法则的运算(而微分是合法的)。有些资料在计算矩阵导数时,会略过求微分这一步,这是逻辑上解释不通的。


例2:f = \boldsymbol{a}^T \exp(X\boldsymbol{b}),求\frac{\partial f}{\partial X}。其中\boldsymbol{a}m×1列向量,Xm\times n矩阵,\boldsymbol{b}n×1列向量,exp表示逐元素求指数,f是标量。

解:先使用矩阵乘法、逐元素函数法则求微分:df = \boldsymbol{a}^T(\exp(X\boldsymbol{b})\odot (dX\boldsymbol{b})),再套上迹并做交换:df = \text{tr}( \boldsymbol{a}^T(\exp(X\boldsymbol{b})\odot (dX\boldsymbol{b}))) =\text{tr}((\boldsymbol{a}\odot \exp(X\boldsymbol{b}))^TdX \boldsymbol{b}) = \text{tr}(\boldsymbol{b}(\boldsymbol{a}\odot \exp(X\boldsymbol{b}))^TdX) = \text{tr}(((\boldsymbol{a}\odot \exp(X\boldsymbol{b}))\boldsymbol{b}^T)^TdX),注意这里我们先根据\text{tr}(A^T(B\odot C)) = \text{tr}((A\odot B)^TC)交换了\boldsymbol{a}\exp(X\boldsymbol{b})dX\boldsymbol{b},再根据\text{tr}(AB) = \text{tr}(BA)交换了(\boldsymbol{a}\odot \exp(X\boldsymbol{b}))^TdX\boldsymbol{b}。对照导数与微分的联系df = \text{tr}\left(\frac{\partial f}{\partial X}^T dX\right),得到\frac{\partial f}{\partial X} = (\boldsymbol{a}\odot \exp(X\boldsymbol{b}))\boldsymbol{b}^T


例3:f = \text{tr}(Y^T M Y), Y = \sigma(WX),求\frac{\partial f}{\partial X}。其中Wl×m矩阵,Xm\times n矩阵,Yl\times n矩阵,Ml×l对称矩阵,\sigma是逐元素函数,f是标量。

解:先求\frac{\partial f}{\partial Y},求微分,使用矩阵乘法、转置法则:df = \text{tr}((dY)^TMY) + \text{tr}(Y^TMdY) = \text{tr}(Y^TM^TdY) + \text{tr}(Y^TMdY) = \text{tr}(Y^T(M+M^T)dY),对照导数与微分的联系,得到\frac{\partial f}{\partial Y}=(M+M^T)Y = 2MY,注意这里M是对称矩阵。为求\frac{\partial f}{\partial X},写出df = \text{tr}\left(\frac{\partial f}{\partial Y}^T dY\right),再将dY用dX表示出来代入,并使用矩阵乘法/逐元素乘法交换:df = \text{tr}\left(\frac{\partial f}{\partial Y}^T (\sigma'(WX)\odot (WdX))\right) = \text{tr}\left(\left(\frac{\partial f}{\partial Y} \odot \sigma'(WX)\right)^T W dX\right),对照导数与微分的联系,得到\frac{\partial f}{\partial X}=W^T \left(\frac{\partial f}{\partial Y}\odot \sigma'(WX)\right)=W^T((2M\sigma(WX))\odot\sigma'(WX))


例4【线性回归】:l = \|X\boldsymbol{w}- \boldsymbol{y}\|^2, 求\boldsymbol{w}的最小二乘估计,即求\frac{\partial l}{\partial \boldsymbol{w}}的零点。其中\boldsymbol{y}m×1列向量,Xm\times n矩阵,\boldsymbol{w}n×1列向量,l是标量。

解:这是标量对向量的导数,不过可以把向量看做矩阵的特例。先将向量模平方改写成向量与自身的内积:l = (X\boldsymbol{w}- \boldsymbol{y})^T(X\boldsymbol{w}- \boldsymbol{y}),求微分,使用矩阵乘法、转置等法则:dl = (Xd\boldsymbol{w})^T(X\boldsymbol{w}-\boldsymbol{y})+(X\boldsymbol{w}-\boldsymbol{y})^T(Xd\boldsymbol{w}) = 2(X\boldsymbol{w}-\boldsymbol{y})^TXd\boldsymbol{w},注意这里 Xd\boldsymbol{w}X\boldsymbol{w}-\boldsymbol{y}是向量,两个向量的内积满足\boldsymbol{u}^T\boldsymbol{v} = \boldsymbol{v}^T \boldsymbol{u}。对照导数与微分的联系dl = \frac{\partial l}{\partial \boldsymbol{w}}^Td\boldsymbol{w},得到\frac{\partial l}{\partial \boldsymbol{w}} = 2X^T(X\boldsymbol{w}-\boldsymbol{y})\frac{\partial l}{\partial \boldsymbol{w}}=\boldsymbol{0}X^TX\boldsymbol{w} = X^T\boldsymbol{y},得到\boldsymbol{w}的最小二乘估计为\boldsymbol{w} = (X^TX)^{-1}X^T\boldsymbol{y}


例5【方差的最大似然估计】:样本\boldsymbol{x}_1,\dots, \boldsymbol{x}_N \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma),求方差\Sigma的最大似然估计。写成数学式是:l = \log|\Sigma|+\frac{1}{N}\sum_{i=1}^N(\boldsymbol{x}_i-\boldsymbol{\bar{x}})^T\Sigma^{-1}(\boldsymbol{x}_i-\boldsymbol{\bar{x}}),求\frac{\partial l }{\partial \Sigma}的零点。其中\boldsymbol{x}_im\times 1列向量,\bar{\boldsymbol{x}}=\frac{1}{N}\sum_{i=1}^N \boldsymbol{x}_i是样本均值,\Sigmam\times m对称正定矩阵,l是标量,log表示自然对数。

解:首先求微分,使用矩阵乘法、行列式、逆等运算法则,第一项是d\log|\Sigma| = |\Sigma|^{-1}d|\Sigma| = \text{tr}(\Sigma^{-1}d\Sigma),第二项是\frac{1}{N}\sum_{i=1}^N(\boldsymbol{x}_i-\boldsymbol{\bar{x}})^Td\Sigma^{-1}(\boldsymbol{x}_i-\boldsymbol{\bar{x}}) = -\frac{1}{N}\sum_{i=1}^N(\boldsymbol{x}_i-\boldsymbol{\bar{x}})^T\Sigma^{-1}d\Sigma\Sigma^{-1}(\boldsymbol{x}_i-\boldsymbol{\bar{x}})。再给第二项套上迹做交换: \text{tr}\left(\frac{1}{N}\sum_{i=1}^N(\boldsymbol{x}_i-\boldsymbol{\bar{x}})^T\Sigma^{-1}d\Sigma\Sigma^{-1}(\boldsymbol{x}_i-\boldsymbol{\bar{x}})\right) = \frac{1}{N} \sum_{i=1}^N \text{tr}((\boldsymbol{x}_i-\boldsymbol{\bar{x}})^T\Sigma^{-1} d\Sigma \Sigma^{-1}(\boldsymbol{x}_i-\boldsymbol{\bar{x}}))= \frac{1}{N}\sum_{i=1}^N\text{tr}\left(\Sigma^{-1}(\boldsymbol{x}_i-\boldsymbol{\bar{x}})(\boldsymbol{x}_i-\boldsymbol{\bar{x}})^T\Sigma^{-1}d\Sigma\right)=\text{tr}(\Sigma^{-1}S\Sigma^{-1}d\Sigma),其中先交换迹与求和,然后将 \Sigma^{-1} (\boldsymbol{x}_i-\boldsymbol{\bar{x}})交换到左边,最后再交换迹与求和,并定义S = \frac{1}{N}\sum_{i=1}^N(\boldsymbol{x}_i-\boldsymbol{\bar{x}})(\boldsymbol{x}_i-\boldsymbol{\bar{x}})^T为样本方差矩阵。得到dl = \text{tr}\left(\left(\Sigma^{-1}-\Sigma^{-1}S\Sigma^{-1}\right)d\Sigma\right)。对照导数与微分的联系,有\frac{\partial l }{\partial \Sigma}=(\Sigma^{-1}-\Sigma^{-1}S\Sigma^{-1})^T,其零点即\Sigma的最大似然估计为\Sigma = S


例6【多元logistic回归】:l = -\boldsymbol{y}^T\log\text{softmax}(W\boldsymbol{x}),求\frac{\partial l}{\partial W}。其中\boldsymbol{y}是除一个元素为1外其它元素为0的m×1列向量,Wm\times n矩阵,\boldsymbol{x}n×1列向量,l是标量;log表示自然对数,\text{softmax}(\boldsymbol{a}) = \frac{\exp(\boldsymbol{a})}{\boldsymbol{1}^T\exp(\boldsymbol{a})},其中\exp(\boldsymbol{a})表示逐元素求指数,\boldsymbol{1}代表全1向量。

解1:首先将softmax函数代入并写成l = -\boldsymbol{y}^T \left(\log (\exp(W\boldsymbol{x}))-\boldsymbol{1}\log(\boldsymbol{1}^T\exp(W\boldsymbol{x}))\right) = -\boldsymbol{y}^TW\boldsymbol{x} + \log(\boldsymbol{1}^T\exp(W\boldsymbol{x})),这里要注意逐元素log满足等式\log(\boldsymbol{u}/c) = \log(\boldsymbol{u}) - \boldsymbol{1}\log(c),以及\boldsymbol{y}满足\boldsymbol{y}^T \boldsymbol{1} = 1。求微分,使用矩阵乘法、逐元素函数等法则:dl =- \boldsymbol{y}^TdW\boldsymbol{x}+\frac{\boldsymbol{1}^T\left(\exp(W\boldsymbol{x})\odot(dW\boldsymbol{x})\right)}{\boldsymbol{1}^T\exp(W\boldsymbol{x})}。再套上迹并做交换,注意可化简\boldsymbol{1}^T\left(\exp(W\boldsymbol{x})\odot(dW\boldsymbol{x})\right) = \exp(W\boldsymbol{x})^TdW\boldsymbol{x},这是根据等式\boldsymbol{1}^T (\boldsymbol{u}\odot \boldsymbol{v}) = \boldsymbol{u}^T \boldsymbol{v},故dl = \text{tr}\left(-\boldsymbol{y}^TdW\boldsymbol{x}+\frac{\exp(W\boldsymbol{x})^TdW\boldsymbol{x}}{\boldsymbol{1}^T\exp(W\boldsymbol{x})}\right) =\text{tr}(-\boldsymbol{y}^TdW\boldsymbol{x}+\text{softmax}(W\boldsymbol{x})^TdW\boldsymbol{x}) = \text{tr}(\boldsymbol{x}(\text{softmax}(W\boldsymbol{x})-\boldsymbol{y})^TdW)。对照导数与微分的联系,得到\frac{\partial l}{\partial W}= (\text{softmax}(W\boldsymbol{x})-\boldsymbol{y})\boldsymbol{x}^T

解2:定义\boldsymbol{a} = W\boldsymbol{x},则l = -\boldsymbol{y}^T\log\text{softmax}(\boldsymbol{a}) ,先同上求出\frac{\partial l}{\partial \boldsymbol{a}} = \text{softmax}(\boldsymbol{a})-\boldsymbol{y} ,再利用复合法则:dl = \text{tr}\left(\frac{\partial l}{\partial \boldsymbol{a}}^Td\boldsymbol{a}\right) = \text{tr}\left(\frac{\partial l}{\partial \boldsymbol{a}}^TdW \boldsymbol{x}\right) = \text{tr}\left(\boldsymbol{x}\frac{\partial l}{\partial \boldsymbol{a}}^TdW\right),得到\frac{\partial l}{\partial W}= \frac{\partial l}{\partial\boldsymbol{a}}\boldsymbol{x}^T


最后一例留给经典的神经网络。神经网络的求导术是学术史上的重要成果,还有个专门的名字叫做BP算法,我相信如今很多人在初次推导BP算法时也会颇费一番脑筋,事实上使用矩阵求导术来推导并不复杂。为简化起见,我们推导二层神经网络的BP算法。

例7【二层神经网络】:l = -\boldsymbol{y}^T\log\text{softmax}(W_2\sigma(W_1\boldsymbol{x})),求\frac{\partial l}{\partial W_1}\frac{\partial l}{\partial W_2}。其中\boldsymbol{y}是除一个元素为1外其它元素为0的的m×1列向量,W_2m\times p矩阵,W_1p \times n矩阵,\boldsymbol{x}n×1列向量,l是标量;log表示自然对数,\text{softmax}(\boldsymbol{a}) = \frac{\exp(\boldsymbol{a})}{\boldsymbol{1}^T\exp(\boldsymbol{a})}同上,\sigma是逐元素sigmoid函数\sigma(a) = \frac{1}{1+\exp(-a)}

解:定义\boldsymbol{a}_1=W_1\boldsymbol{x}\boldsymbol{h}_1 = \sigma(\boldsymbol{a}_1)\boldsymbol{a}_2 = W_2 \boldsymbol{h}_1,则l =-\boldsymbol{y}^T\log\text{softmax}(\boldsymbol{a}_2)。在前例中已求出\frac{\partial l}{\partial \boldsymbol{a}_2} = \text{softmax}(\boldsymbol{a}_2)-\boldsymbol{y} 。使用复合法则,dl = \text{tr}\left(\frac{\partial l}{\partial \boldsymbol{a}_2}^Td\boldsymbol{a}_2\right) = \text{tr}\left(\frac{\partial l}{\partial \boldsymbol{a}_2}^TdW_2 \boldsymbol{h}_1\right) + \underbrace{ \text{tr}\left(\frac{\partial l}{\partial \boldsymbol{a}_2}^TW_2 d\boldsymbol{h}_1\right)}_{dl_2},使用矩阵乘法交换的迹技巧从第一项得到\frac{\partial l}{\partial W_2}= \frac{\partial l}{\partial\boldsymbol{a}_2}\boldsymbol{h}_1^T,从第二项得到\frac{\partial l}{\partial \boldsymbol{h}_1}= W_2^T\frac{\partial l}{\partial\boldsymbol{a}_2}。接下来对第二项继续使用复合法则来求\frac{\partial l}{\partial \boldsymbol{a}_1},并利用矩阵乘法和逐元素乘法交换的迹技巧:dl_2 = \text{tr}\left(\frac{\partial l}{\partial\boldsymbol{h}_1}^Td\boldsymbol{h}_1\right) = \text{tr}\left(\frac{\partial l}{\partial\boldsymbol{h}_1}^T(\sigma'(\boldsymbol{a}_1)\odot d\boldsymbol{a}_1)\right) = \text{tr}\left(\left(\frac{\partial l}{\partial\boldsymbol{h}_1}\odot \sigma'(\boldsymbol{a}_1)\right)^Td\boldsymbol{a}_1\right),得到\frac{\partial l}{\partial \boldsymbol{a}_1}= \frac{\partial l}{\partial\boldsymbol{h}_1}\odot\sigma'(\boldsymbol{a}_1)。为求\frac{\partial l}{\partial W_1},再用一次复合法则:dl_2 = \text{tr}\left(\frac{\partial l}{\partial\boldsymbol{a}_1}^Td\boldsymbol{a}_1\right) = \text{tr}\left(\frac{\partial l}{\partial\boldsymbol{a}_1}^TdW_1\boldsymbol{x}\right) = \text{tr}\left(\boldsymbol{x}\frac{\partial l}{\partial\boldsymbol{a}_1}^TdW_1\right),得到\frac{\partial l}{\partial W_1}= \frac{\partial l}{\partial\boldsymbol{a}_1}\boldsymbol{x}^T

推广:样本(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_N,y_N)l = -\sum_{i=1}^N \boldsymbol{y}_i^T\log\text{softmax}(W_2\sigma(W_1\boldsymbol{x}_i + \boldsymbol{b}_1) + \boldsymbol{b}_2),其中\boldsymbol{b}_1p \times 1列向量,\boldsymbol{b}_2m\times 1列向量,其余定义同上。

解1:定义\boldsymbol{a}_{1,i} = W_1 \boldsymbol{x}_i + \boldsymbol{b}_1\boldsymbol{h}_{1,i} = \sigma(\boldsymbol{a}_{1,i})\boldsymbol{a}_{2,i} = W_2\boldsymbol{h}_{1,i} + \boldsymbol{b}_2,则l = -\sum_{i=1}^N \boldsymbol{y}_i^T \log \text{softmax}(\boldsymbol{a}_{2,i})。先同上可求出\frac{\partial l}{\partial \boldsymbol{a}_{2,i}} = \text{softmax}(\boldsymbol{a}_{2,i})-\boldsymbol{y}_i 。使用复合法则,dl = \text{tr}\left(\sum_{i=1}^N\frac{\partial l}{\partial \boldsymbol{a}_{2,i}}^T d \boldsymbol{a}_{2,i}\right) = \text{tr}\left( \sum_{i=1}^N \frac{\partial l}{\partial \boldsymbol{a}_{2,i}}^T dW_2 \boldsymbol{h}_{1,i}\right) + \underbrace{\text{tr}\left( \sum_{i=1}^N \frac{\partial l}{\partial \boldsymbol{a}_{2,i}}^T W_2 d\boldsymbol{h}_{1,i}\right)}_{dl_2} + \text{tr}\left( \sum_{i=1}^N \frac{\partial l}{\partial \boldsymbol{a}_{2,i}}^T d \boldsymbol{b}_2\right),从第一项得到得到\frac{\partial l}{\partial W_2}= \sum_{i=1}^N \frac{\partial l}{\partial\boldsymbol{a}_{2,i}}\boldsymbol{h}_{1,i}^T,从第二项得到\frac{\partial l}{\partial \boldsymbol{h}_{1,i}}= W_2^T\frac{\partial l}{\partial\boldsymbol{a}_{2,i}},从第三项得到到\frac{\partial l}{\partial \boldsymbol{b}_2}= \sum_{i=1}^N \frac{\partial l}{\partial\boldsymbol{a}_{2,i}}。接下来对第二项继续使用复合法则,得到\frac{\partial l}{\partial \boldsymbol{a}_{1,i}}= \frac{\partial l}{\partial\boldsymbol{h}_{1,i}}\odot\sigma'(\boldsymbol{a}_{1,i})。为求\frac{\partial l}{\partial W_1}, \frac{\partial l}{\partial \boldsymbol{b}_1},再用一次复合法则:dl_2 = \text{tr}\left(\sum_{i=1}^N \frac{\partial l}{\partial\boldsymbol{a}_{1,i}}^Td\boldsymbol{a}_{1,i}\right) = \text{tr}\left(\sum_{i=1}^N \frac{\partial l}{\partial\boldsymbol{a}_{1,i}}^TdW_1\boldsymbol{x}_i\right) + \text{tr}\left(\sum_{i=1}^N \frac{\partial l}{\partial\boldsymbol{a}_{1,i}}^Td\boldsymbol{b}_1\right),得到\frac{\partial l}{\partial W_1}= \sum_{i=1}^N \frac{\partial l}{\partial\boldsymbol{a}_{1,i}}\boldsymbol{x}_i^T\frac{\partial l}{\partial \boldsymbol{b}_1}= \sum_{i=1}^N \frac{\partial l}{\partial\boldsymbol{a}_{1,i}}

解2:可以用矩阵来表示N个样本,以简化形式。定义X = [\boldsymbol{x}_1, \cdots, \boldsymbol{x}_N]A_1 = [\boldsymbol{a}_{1,1},\cdots,\boldsymbol{a}_{1,N}] =W_1 X + \boldsymbol{b}_1 \boldsymbol{1}^TH_1 = [\boldsymbol{h}_{1,1}, \cdots, \boldsymbol{h}_{1,N}] = \sigma(A_1)A_2 = [\boldsymbol{a}_{2,1},\cdots,\boldsymbol{a}_{2,N}] = W_2 H_1 + \boldsymbol{b}_2 \boldsymbol{1}^T,注意这里使用全1向量来扩展维度。先同上求出\frac{\partial l}{\partial A_2} = [\text{softmax}(\boldsymbol{a}_{2,1})-\boldsymbol{y}_1, \cdots, \text{softmax}(\boldsymbol{a}_{2,N})-\boldsymbol{y}_N] 。使用复合法则,dl = \text{tr}\left(\frac{\partial l}{\partial A_2}^T d A_2\right) = \text{tr}\left( \frac{\partial l}{\partial A_2}^T dW_2 H_1 \right) + \underbrace{\text{tr}\left(\frac{\partial l}{\partial A_2}^T W_2 d H_1\right)}_{dl_2} + \text{tr}\left(\frac{\partial l}{\partial A_2}^T d \boldsymbol{b}_2 \boldsymbol{1}^T\right) ,从第一项得到\frac{\partial l}{\partial W_2}= \frac{\partial l}{\partial A_2}H_1^T,从第二项得到\frac{\partial l}{\partial H_1}= W_2^T\frac{\partial l}{\partial A_{2}},从第三项得到到\frac{\partial l}{\partial \boldsymbol{b}_2}= \frac{\partial l}{\partial A_2}\boldsymbol{1}。接下来对第二项继续使用复合法则,得到\frac{\partial l}{\partial A_1}= \frac{\partial l}{\partial H_1}\odot\sigma'(A_1)。为求\frac{\partial l}{\partial W_1}, \frac{\partial l}{\partial \boldsymbol{b}_1},再用一次复合法则:dl_2 = \text{tr}\left(\frac{\partial l}{\partial A_1}^TdA_1\right) = \text{tr}\left(\frac{\partial l}{\partial A_1}^TdW_1X\right) + \text{tr}\left( \frac{\partial l}{\partial A_1}^Td\boldsymbol{b}_1 \boldsymbol{1}^T\right),得到\frac{\partial l}{\partial W_1}= \frac{\partial l}{\partial A_1}X^T\frac{\partial l}{\partial \boldsymbol{b}_1}= \frac{\partial l}{\partial A_1}\boldsymbol{1}


下篇见zhuanlan.zhihu.com/p/24

编辑于 2020-03-06 06:32