python生成器到底有什么优点?

例如:用[]推导出来的列表和()推导出来的生成器,在用for循环打印时,有什么不同吗?哪个环节不一样?
关注者
274
被浏览
112,808

31 个回答

也欢迎关注我的知乎账号 @石溪 ,将持续发布机器学习数学基础及Python数据分析编程应用等方面的精彩内容。

说生成器之前,先说说列表解析式,他的优点很多,比如运行速度快、编写简单,但是有一点我们不要忘了,他是一次性生成整个列表。如果整个列表非常大,这对内存也同样会造成很大压力,想要实现内存的节约,可以将列表解析式转换为生成器表达式。

python中有两种语言结构可以实现这种思路。

一个是生成器函数,外表看上去像是一个函数,但是没有用return语句一次性的返回整个结果对象列表,取而代之的是使用yield语句一次返回一个结果。另一个是生成器表达式,类似于上一小节的列表解析,但是方括号换成了圆括号,他们返回按需产生的一个结果对象,而不是构建一个结果列表。

这个“按需”指的是在迭代的环境中,每次迭代按需产生一个对象,因此,上述二者都不会一次性构建整个列表,从而节约了内存空间。

那举几个例子说说

好,下面具体结合例子说说生成器函数。

首先,我们还没有详细介绍过函数,先简单说一下,常规函数接受输入的参数然后立即送回单个结果,之后这个函数调用就结束了。

但生成器函数却不同,他通过yield关键字返回一个值后,还能从其退出的地方继续运行,因此可以随时间产生一系列的值。他们自动实现了迭代协议,并且可以出现在迭代环境中。

运行的过程是这样的:生成器函数返回一个迭代器,for循环等迭代环境对这个迭代器不断调用next函数,不断的运行到下一个yield语句,逐一取得每一个返回值,直到没有yield语句可以运行,最终引发StopIteration异常。看,这个过程是不是很熟悉。

首先,下面这个例子证实了生成器函数返回的是一个迭代器

def gen_squares(num):
    for x in range(num):
        yield x ** 2

G = gen_squares(5)
print(G)
print(iter(G))

<generator object gen_squares at 0x0000000002402558>
<generator object gen_squares at 0x0000000002402558>

然后再用手动模拟循环的方式来看看生成器函数的运行过程,你会发现和前面介绍过的熟悉场景并无二致。

def gen_squares(num):
    for x in range(num):
        yield x ** 2

G = gen_squares(3)
print(G)
print(iter(G))
print(next(G))
print(next(G))
print(next(G))
print(next(G))


<generator object gen_squares at 0x00000000021C2558>
<generator object gen_squares at 0x00000000021C2558>
0
1
4
Traceback (most recent call last):
 File "E:/12homework/12homework.py", line 10, in <module>
print(next(G))
StopIteration

那这么看,在for循环等真正的使用场景中使用也不难了

def gen_squares(num):
    for x in range(num):
        yield x ** 2

for i in gen_squares(5):
    print(i, end=' ')

0 1 4 9 16 

我们进一步来说说生成器函数里状态保存的话题。在每次循环的时候,生成器函数都会在yield处产生一个值,并将其返回给调用者,即for循环。然后在yield处保存内部状态,并挂起中断退出。在下一轮迭代调用时,从yield的地方继续执行,并且沿用上一轮的函数内部变量的状态,直到内部循环过程结束。

关于这个问题,具体可以看看这个例子:

def gen_squares(num):
    for x in range(num):
        yield x ** 2
        print('x={}'.format(x))

for i in gen_squares(4):
print('x ** 2={}'.format(i))
print('--------------')

x ** 2=0
--------------
x=0
x ** 2=1
--------------
x=1
x ** 2=4
--------------
x=2
x ** 2=9
--------------
x=3

我们不难发现,生成器函数计算出x的平方后就挂起退出了,但他仍然保存了此时x的值,而yield后的print语句会在for循环的下一轮迭代中首先调用,此时x的值即是上一轮退出时保存的值。

那再说说生成器表达式吧。

列表解析式已经是一个不错的选择,从内存使用的角度而言,生成器更优,因为他不用一次性生成整个对象列表,这二者之间如何转化呢?

生成器表达式写法上很像列表解析式,但是外面的方括号换成了圆括号,结果大不同

简单的看看:

print([x ** 2 for x in range(5)])
print((x ** 2 for x in range(5)))

[0, 1, 4, 9, 16]
<generator object <genexpr> at 0x0000000002212558>

方括号是熟悉的列表解析式,一次性返回整个列表,圆括号是生成器表达式,返回一个生成器对象,而不是一次性生成整个列表。

同时他支持迭代协议,适用于所有的迭代环境:

略举几个例子:

for x in (x ** 2 for x in range(5)):
    print(x, end=',')

0,1,4,9,16,


print(sum(x ** 2 for x in range(5)))

30


print(sorted((x ** 2 for x in range(5)), reverse=True))

[16, 9, 4, 1, 0]


print(list(x ** 2 for x in range(5)))

[0, 1, 4, 9, 16]

总结:生成器表达式是对内存空间的优化。他们不需要像方括号的列表解析一样,一次构造出整个结果列表。他们运行起来比列表解析式可能稍慢一些,因此他们对于非常大的结果集合运算是最优的选择。

那总结起来一句话:列表解析式最快,生成器表达式最省空间,速度也还可以。

关于Python编程和数据分析更全面的内容,欢迎关注我在CSDN上的专栏《python数据分析编程基础》。

当然还有《机器学习中的数学-全集》系列专栏,欢迎大家阅读,配合食用,效果更佳~

有订阅的问题可咨询微信:zhangyumeng0422

在Python这门语言中,生成器毫无疑问是最有用的特性之一。与此同时,也是使用的最不广泛的Python特性之一。究其原因,主要是因为,在其他主流语言里面没有生成器的概念。正是由于生成器是一个“新”的东西,所以,它一方面没有引起广大工程师的重视,另一方面,也增加了工程师的学习成本,最终导致大家错过了Python中如此有用的一个特性。


我的这篇文章,希望通过简单易懂的方式,深入浅出地介绍Python的生成器,以改变“如此有用的特性却使用极不广泛”的现象。本文的组织如下:在第1章,我们简单地介绍了Python中的迭代器协议;在本文第2章,将会详细介绍生成器的概念和语法;在第3章,将会给出一个有用的例子,说明使用生成器的好处;在本文最后,简单的讨论了使用生成器的注意事项。


1. 迭代器协议

由于生成器自动实现了迭代器协议,而迭代器协议对很多人来说,也是一个较为抽象的概念。所以,为了更好的理解生成器,我们需要简单的回顾一下迭代器协议的概念。

  1. 迭代器协议是指:对象需要提供next方法,它要么返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代
  2. 可迭代对象就是:实现了迭代器协议的对象
  3. 协议是一种约定,可迭代对象实现迭代器协议,Python的内置工具(如for循环,sum,min,max函数等)使用迭代器协议访问对象。

举个例子:在所有语言中,我们都可以使用for循环来遍历数组,Python的list底层实现是一个数组,所以,我们可以使用for循环来遍历list。如下所示:

>>> for n in [1, 2, 3, 4]:
...     print n

但是,对Python稍微熟悉一点的朋友应该知道,Python的for循环不但可以用来遍历list,还可以用来遍历文件对象,如下所示:

>>> with open(/etc/passwd) as f: # 文件对象提供迭代器协议
...     for line in f: # for循环使用迭代器协议访问文件
...         print line
... 

为什么在Python中,文件还可以使用for循环进行遍历呢?这是因为,在Python中,文件对象实现了迭代器协议,for循环并不知道它遍历的是一个文件对象,它只管使用迭代器协议访问对象即可。正是由于Python的文件对象实现了迭代器协议,我们才得以使用如此方便的方式访问文件,如下所示:

>>> f = open('/etc/passwd')
>>> dir(f)
['__class__', '__enter__', '__exit__', '__iter__', '__new__', 'writelines', '...'

2. 生成器

Python使用生成器对延迟操作提供了支持。所谓延迟操作,是指在需要的时候才产生结果,而不是立即产生结果。这也是生成器的主要好处。


Python有两种不同的方式提供生成器:

  1. 生成器函数:常规函数定义,但是,使用yield语句而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次重它离开的地方继续执行
  2. 生成器表达式:类似于列表推导,但是,生成器返回按需产生结果的一个对象,而不是一次构建一个结果列表

2.1 生成器函数

我们来看一个例子,使用生成器返回自然数的平方(注意返回的是多个值):

def gensquares(N):
    for i in range(N):
        yield i ** 2

for item in gensquares(5):
    print item,

使用普通函数:

def gensquares(N):
    res = []
    for i in range(N):
        res.append(i*i)
    return res

for item in gensquares(5):
    print item,

可以看到,使用生成器函数代码量更少。


2.2 生成器表达式

使用列表推导,将会一次产生所有结果:

>>> squares = [x**2 for x in range(5)]
>>> squares
[0, 1, 4, 9, 16]

将列表推导的中括号,替换成圆括号,就是一个生成器表达式:

>>> squares = (x**2 for x in range(5))
>>> squares
<generator object at 0x00B2EC88>
>>> next(squares)
0
>>> next(squares)
1
>>> next(squares)
4
>>> list(squares)
[9, 16]

Python不但使用迭代器协议,让for循环变得更加通用。大部分内置函数,也是使用迭代器协议访问对象的。例如, sum函数是Python的内置函数,该函数使用迭代器协议访问对象,而生成器实现了迭代器协议,所以,我们可以直接这样计算一系列值的和:

>>> sum(x ** 2 for x in xrange(4)) 

而不用多此一举的先构造一个列表:

>>> sum([x ** 2 for x in xrange(4)]) 

2.3 再看生成器

前面已经对生成器有了感性的认识,我们以生成器函数为例,再来深入探讨一下Python的生成器:

  1. 语法上和函数类似:生成器函数和常规函数几乎是一样的。它们都是使用def语句进行定义,差别在于,生成器使用yield语句返回一个值,而常规函数使用return语句返回一个值
  2. 自动实现迭代器协议:对于生成器,Python会自动实现迭代器协议,以便应用到迭代背景中(如for循环,sum函数)。由于生成器自动实现了迭代器协议,所以,我们可以调用它的next方法,并且,在没有值可以返回的时候,生成器自动产生StopIteration异常
  3. 状态挂起:生成器使用yield语句返回一个值。yield语句挂起该生成器函数的状态,保留足够的信息,以便之后从它离开的地方继续执行

3. 示例

我们再来看两个生成器的例子,以便大家更好的理解生成器的作用。


首先,生成器的好处是延迟计算,一次返回一个结果。也就是说,它不会一次生成所有的结果,这对于大数据量处理,将会非常有用。


大家可以在自己电脑上试试下面两个表达式,并且观察内存占用情况。对于前一个表达式,我在自己的电脑上进行测试,还没有看到最终结果电脑就已经卡死,对于后一个表达式,几乎没有什么内存占用。

sum([i for i in xrange(10000000000)])
sum(i for i in xrange(10000000000))

除了延迟计算,生成器还能有效提高代码可读性。例如,现在有一个需求,求一段文字中,每个单词出现的位置。


不使用生成器的情况:

def index_words(text):
    result = []
    if text:
        result.append(0)
    for index, letter in enumerate(text, 1):
        if letter == ' ':
            result.append(index)
    return result

使用生成器的情况:

def index_words(text):
    if text:
        yield 0
    for index, letter in enumerate(text, 1):
        if letter == ' ':
            yield index

这里,至少有两个充分的理由说明 ,使用生成器比不使用生成器代码更加清晰:

  1. 使用生成器以后,代码行数更少。大家要记住,如果想把代码写的Pythonic,在保证代码可读性的前提下,代码行数越少越好
  2. 不使用生成器的时候,对于每次结果,我们首先看到的是result.append(index),其次,才是index。也就是说,我们每次看到的是一个列表的append操作,只是append的是我们想要的结果。使用生成器的时候,直接yield index,少了列表append操作的干扰,我们一眼就能够看出,代码是要返回index。

这个例子充分说明了,合理使用生成器,能够有效提高代码可读性。只要大家完全接受了生成器的概念,理解了yield语句和return语句一样,也是返回一个值。那么,就能够理解为什么使用生成器比不使用生成器要好,能够理解使用生成器真的可以让代码变得清晰易懂。


4. 使用生成器的注意事项

相信通过这篇文章,大家已经能够理解生成器的作用和好处。但是,还没有结束,使用生成器,也有一点注意事项。


我们直接来看例子,假设文件中保存了每个省份的人口总数,现在,需要求每个省份的人口占全国总人口的比例。显然,我们需要先求出全国的总人口,然后在遍历每个省份的人口,用每个省的人口数除以总人口数,就得到了每个省份的人口占全国人口的比例。


如下所示:

def get_province_population(filename):
    with open(filename) as f:
        for line in f:
            yield int(line)

gen = get_province_population('data.txt')
all_population = sum(gen)
#print all_population
for population in gen:
    print population / all_population

执行上面这段代码,将不会有任何输出,这是因为,生成器只能遍历一次。在我们执行sum语句的时候,就遍历了我们的生成器,当我们再次遍历我们的生成器的时候,将不会有任何记录。所以,上面的代码不会有任何输出。


因此,生成器的唯一注意事项就是:生成器只能遍历一次


5. 总结

本文深入浅出地介绍了Python中,一个容易被大家忽略的重要特性,即Python的生成器。为了讲解生成器,本文先介绍了迭代器协议,然后介绍了生成器函数和生成器表达式,并通过示例演示了生成器的优点和注意事项。在实际工作中,充分利用Python生成器,不但能够减少内存使用,还能够提高代码可读性。掌握生成器也是Python高手的标配。希望本文能够帮助大家理解Python的生成器。


对我这篇文章感兴趣的同学,也可以看看我之前的回答:怎么样才算是精通 Python?