前言的前言:Darknet是一个较为轻型的完全基于C与CUDA的开源深度学习框架,其主要特点就是容易安装,没有任何依赖项(OpenCV都可以不用),移植性非常好,支持CPU与GPU两种计算方式。而AlexeyAB版本的Darknet是在官方Darknet基础上进行了很多修改,添加了一些新特性,新算法,新Backbone,是最流行的目标检测开源项目之一。
总写一些论文解读自然是不太好的,因为我感觉纸上谈兵用处没那么大,如果你从事深度学习,不静心阅读几个框架那么代码能力肯定是有欠缺的。趁着自己C语言还没有完全忘记,我决定来仔细探索一番AlexeyAB的Darknet框架,所以就有了这个【AlexeyAB DarkNet框架解析】系列。这个系列的更新肯定是十分漫长的,因为里面有很多算法或者特性我也可能还没有怎么学过,所以也是有一些难度,但正所谓硬骨头啃了之后才有营养,所以我决定开这个系列。从今天起,我将尝试做一个最详细的Darknet源码解析(不定期更新),从数据结构到各种新式Backbone再到多种损失函数再到各种新特性等。希望这个系列更新我能和你一起完全掌握这个AlexeyAB版Darknet,并且在阅读代码的能力方面有所提升。值得一提的是AlexeyAB版本Darknet的README.md已经被我们整理成了中文版本,如果你是学术派不是很在意底层代码实现你可以参考README.md去训练或者测试你想要的模型。README.md的中文翻译地址如下:【翻译】手把手教你用AlexeyAB版Darknet 。注意这一节仅仅是框架总览,不会那么详细,后面会非常详细的来逐步分析每个步骤。
Darknet相比当前训练的C/C++主流框架(如Caffe)来讲,具有编译速度快,依赖少,易部署等众多优点,我们先定位到src/darknet.c
里面的main
函数,这是这个框架实现分类,定位,回归,分割等功能的初始入口。这一节的核心代码如下,注意一下就是run_yolo
只提供了yolo
目标检测算法的原始实现。而run_detector
函数提供了AlexeyAB添加了各种新特性的目标检测算法,所以之后我们会从这个函数跟进去来解析Darknet框架。Darknet提供的其他功能如run_super
(高分辨率重建),run_classifier
(图像分类),run_char_rnn
(RNN文本识别)有兴趣可以自己去读(这个框架用来做目标检测比较好,其他算法建议还是去其它框架实现吧),本系列只讲目标检测。
if (0 == strcmp(argv[1], "average")){
average(argc, argv);
} else if (0 == strcmp(argv[1], "yolo")){
run_yolo(argc, argv);
} else if (0 == strcmp(argv[1], "voxel")){
run_voxel(argc, argv);
} else if (0 == strcmp(argv[1], "super")){
run_super(argc, argv);
} else if (0 == strcmp(argv[1], "detector")){
run_detector(argc, argv);
} else if (0 == strcmp(argv[1], "detect")){
float thresh = find_float_arg(argc, argv, "-thresh", .24);
int ext_output = find_arg(argc, argv, "-ext_output");
char *filename = (argc > 4) ? argv[4]: 0;
test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, 0.5, 0, ext_output, 0, NULL, 0, 0);
} else if (0 == strcmp(argv[1], "cifar")){
run_cifar(argc, argv);
} else if (0 == strcmp(argv[1], "go")){
run_go(argc, argv);
} else if (0 == strcmp(argv[1], "rnn")){
run_char_rnn(argc, argv);
} else if (0 == strcmp(argv[1], "vid")){
run_vid_rnn(argc, argv);
} else if (0 == strcmp(argv[1], "coco")){
run_coco(argc, argv);
} else if (0 == strcmp(argv[1], "classify")){
predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5);
} else if (0 == strcmp(argv[1], "classifier")){
run_classifier(argc, argv);
} else if (0 == strcmp(argv[1], "art")){
run_art(argc, argv);
} else if (0 == strcmp(argv[1], "tag")){
run_tag(argc, argv);
} else if (0 == strcmp(argv[1], "compare")){
run_compare(argc, argv);
} else if (0 == strcmp(argv[1], "dice")){
run_dice(argc, argv);
} else if (0 == strcmp(argv[1], "writing")){
run_writing(argc, argv);
} else if (0 == strcmp(argv[1], "3d")){
composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0);
} else if (0 == strcmp(argv[1], "test")){
test_resize(argv[2]);
} else if (0 == strcmp(argv[1], "captcha")){
run_captcha(argc, argv);
} else if (0 == strcmp(argv[1], "nightmare")){
run_nightmare(argc, argv);
} else if (0 == strcmp(argv[1], "rgbgr")){
rgbgr_net(argv[2], argv[3], argv[4]);
} else if (0 == strcmp(argv[1], "reset")){
reset_normalize_net(argv[2], argv[3], argv[4]);
} else if (0 == strcmp(argv[1], "denormalize")){
denormalize_net(argv[2], argv[3], argv[4]);
} else if (0 == strcmp(argv[1], "statistics")){
statistics_net(argv[2], argv[3]);
} else if (0 == strcmp(argv[1], "normalize")){
normalize_net(argv[2], argv[3], argv[4]);
} else if (0 == strcmp(argv[1], "rescale")){
rescale_net(argv[2], argv[3], argv[4]);
} else if (0 == strcmp(argv[1], "ops")){
operations(argv[2]);
} else if (0 == strcmp(argv[1], "speed")){
speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0);
} else if (0 == strcmp(argv[1], "oneoff")){
oneoff(argv[2], argv[3], argv[4]);
} else if (0 == strcmp(argv[1], "partial")){
partial(argv[2], argv[3], argv[4], atoi(argv[5]));
} else if (0 == strcmp(argv[1], "visualize")){
visualize(argv[2], (argc > 3) ? argv[3] : 0);
} else if (0 == strcmp(argv[1], "imtest")){
test_resize(argv[2]);
} else {
fprintf(stderr, "Not an option: %s\n", argv[1]);
}
run_detector
函数在src/detector.c
里面,这个函数首先有很多超参数可以设置,然后我们可以看到这个函数包含了训练验证,测试,计算Anchors,demo展示,计算map值和recall值等功能。由于训练,测试,验证阶段差不多,我们跟进去一个看看就好,至于后面那几个功能是AlexeyAB添加的,之后再逐一解释。
void run_detector(int argc, char **argv)
{
int dont_show = find_arg(argc, argv, "-dont_show");//展示图像界面
int benchmark = find_arg(argc, argv, "-benchmark");//评估模型的表现
int benchmark_layers = find_arg(argc, argv, "-benchmark_layers");
//if (benchmark_layers) benchmark = 1;
if (benchmark) dont_show = 1;
int show = find_arg(argc, argv, "-show");
int letter_box = find_arg(argc, argv, "-letter_box");//是否对图像做letter-box变换
int calc_map = find_arg(argc, argv, "-map");//是否计算map值
int map_points = find_int_arg(argc, argv, "-points", 0);
check_mistakes = find_arg(argc, argv, "-check_mistakes");//检查数据是否有误
int show_imgs = find_arg(argc, argv, "-show_imgs");//显示图片
int mjpeg_port = find_int_arg(argc, argv, "-mjpeg_port", -1);
int json_port = find_int_arg(argc, argv, "-json_port", -1);
char *http_post_host = find_char_arg(argc, argv, "-http_post_host", 0);
int time_limit_sec = find_int_arg(argc, argv, "-time_limit_sec", 0);
char *out_filename = find_char_arg(argc, argv, "-out_filename", 0);
char *outfile = find_char_arg(argc, argv, "-out", 0);
char *prefix = find_char_arg(argc, argv, "-prefix", 0);//模型保存的前缀
float thresh = find_float_arg(argc, argv, "-thresh", .25); // 置信度
float iou_thresh = find_float_arg(argc, argv, "-iou_thresh", .5); // 0.5 for mAP
float hier_thresh = find_float_arg(argc, argv, "-hier", .5);
int cam_index = find_int_arg(argc, argv, "-c", 0);//摄像头编号
int frame_skip = find_int_arg(argc, argv, "-s", 0);//跳帧检测间隔
int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5);
int width = find_int_arg(argc, argv, "-width", -1);// 输入网络的图像宽度
int height = find_int_arg(argc, argv, "-height", -1);// 输入网络的图像高度
// extended output in test mode (output of rect bound coords)
// and for recall mode (extended output table-like format with results for best_class fit)
int ext_output = find_arg(argc, argv, "-ext_output");
int save_labels = find_arg(argc, argv, "-save_labels");
if (argc < 4) {
fprintf(stderr, "usage: %s %s [train/test/valid/demo/map] [data] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);// 多个gpu训练
int *gpus = 0;
int gpu = 0;
int ngpus = 0;
if (gpu_list) {
printf("%s\n", gpu_list);
int len = (int)strlen(gpu_list);
ngpus = 1;
int i;
for (i = 0; i < len; ++i) {
if (gpu_list[i] == ',') ++ngpus;
}
gpus = (int*)xcalloc(ngpus, sizeof(int));
for (i = 0; i < ngpus; ++i) {
gpus[i] = atoi(gpu_list);
gpu_list = strchr(gpu_list, ',') + 1;
}
}
else {
gpu = gpu_index;
gpus = &gpu;
ngpus = 1;
}
int clear = find_arg(argc, argv, "-clear");
char *datacfg = argv[3];//存储训练集,验证集,以及类别对应名字等信息的cfg文件
char *cfg = argv[4];//要训练的网络cfg文件
char *weights = (argc > 5) ? argv[5] : 0;//是否有预训练模型
if (weights)
if (strlen(weights) > 0)
if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0;
char *filename = (argc > 6) ? argv[6] : 0;
if (0 == strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show, ext_output, save_labels, outfile, letter_box, benchmark_layers);//执行目标检测模型测试
else if (0 == strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show, calc_map, mjpeg_port, show_imgs, benchmark_layers);//目标检测模型训练
else if (0 == strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile);//目标检测模型验证
else if (0 == strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights);///计算验证集的召回率
else if (0 == strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh, iou_thresh, map_points, letter_box, NULL);//计算验证集的map值
else if (0 == strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, width, height, show);//计算验证集的anchors
else if (0 == strcmp(argv[2], "demo")) {//demo展示
list *options = read_data_cfg(datacfg);
int classes = option_find_int(options, "classes", 20);
char *name_list = option_find_str(options, "names", "data/names.list");
char **names = get_labels(name_list);
if (filename)
if (strlen(filename) > 0)
if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0;
demo(cfg, weights, thresh, hier_thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename,
mjpeg_port, json_port, dont_show, ext_output, letter_box, time_limit_sec, http_post_host, benchmark, benchmark_layers);
free_list_contents_kvp(options);
free_list(options);
}
else printf(" There isn't such command: %s", argv[2]);
if (gpus && gpu_list && ngpus > 1) free(gpus);
}
由于训练,验证和测试阶段代码几乎是差不多的,只不过训练多了一个反向传播的过程。所以我们主要分析一下训练过程,训练过程是一个比较复杂的过程,不过宏观上大致分为解析网络配置文件,加载训练样本图像和标签,开启训练,结束训练保存模型这样一个过程,部分代码如下(我省略了很多代码,因为这一节是框架总览,后面我们会详细解释的):
void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show, int calc_map, int mjpeg_port, int show_imgs, int benchmark_layers)
{
// 从options找出训练图片路径信息,如果没找到,默认使用"data/train.list"路径下的图片信息(train.list含有标准的信息格式:<object-class> <x> <y> <width> <height>),
// 该文件可以由darknet提供的scripts/voc_label.py根据自行在网上下载的voc数据集生成,所以说是默认路径,其实也需要使用者自行调整,也可以任意命名,不一定要为train.list,
// 甚至可以不用voc_label.py生成,可以自己不厌其烦的制作一个(当然规模应该是很小的,不然太累了。。。)
// 读入后,train_images将含有训练图片中所有图片的标签以及定位信息
list *options = read_data_cfg(datacfg);
char *train_images = option_find_str(options, "train", "data/train.txt");
char *valid_images = option_find_str(options, "valid", train_images);
char *backup_directory = option_find_str(options, "backup", "/backup/");
network net_map;
//如果要计算map
if (calc_map) {
FILE* valid_file = fopen(valid_images, "r");
if (!valid_file) {
printf("\n Error: There is no %s file for mAP calculation!\n Don't use -map flag.\n Or set valid=%s in your %s file. \n", valid_images, train_images, datacfg);
getchar();
exit(-1);
}
else fclose(valid_file);
cuda_set_device(gpus[0]);
printf(" Prepare additional network for mAP calculation...\n");
net_map = parse_network_cfg_custom(cfgfile, 1, 1);
//分类数
const int net_classes = net_map.layers[net_map.n - 1].classes;
int k; // free memory unnecessary arrays
for (k = 0; k < net_map.n - 1; ++k) free_layer_custom(net_map.layers[k], 1);
char *name_list = option_find_str(options, "names", "data/names.list");
int names_size = 0;
//获取类别对应的名字
char **names = get_labels_custom(name_list, &names_size);
if (net_classes != names_size) {
printf(" Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n",
name_list, names_size, net_classes, cfgfile);
if (net_classes > names_size) getchar();
}
free_ptrs((void**)names, net_map.layers[net_map.n - 1].classes);
}
srand(time(0));
// 提取配置文件名称中的主要信息,用于输出打印(并无实质作用),比如提取cfg/yolo.cfg中的yolo,用于下面的输出打印
char *base = basecfg(cfgfile);
printf("%s\n", base);
float avg_loss = -1;
// 构建网络:用多少块GPU,就会构建多少个相同的网络(不使用GPU时,ngpus=1)
network* nets = (network*)xcalloc(ngpus, sizeof(network));
//设定随机数种子
srand(time(0));
int seed = rand();
int i;
// for循环次数为ngpus,使用多少块GPU,就循环多少次(不使用GPU时,ngpus=1,也会循环一次)
// 这里每一次循环都会构建一个相同的神经网络,如果提供了初始训练参数,也会为每个网络导入相同的初始训练参数
for (i = 0; i < ngpus; ++i) {
srand(seed);
#ifdef GPU
cuda_set_device(gpus[i]);
#endif
//解析网络配置文件
nets[i] = parse_network_cfg(cfgfile);
//测试某一个网络层的相关指标如运行时间
nets[i].benchmark_layers = benchmark_layers;
//如果有预训练模型则加载
if (weightfile) {
load_weights(&nets[i], weightfile);
}
//
if (clear) *nets[i].seen = 0;
nets[i].learning_rate *= ngpus;
}
...
}
截图部分yolov3.cfg
网络配置文件如下:
可以看到配置参数大概分为2类:
batch_size, width,height,channel,momentum,decay,angle,saturation, exposure,hue,learning_rate,burn_in,max_batches,policy,steps,scales
。[convolutional], [short_cut], [yolo], [route], [upsample]
层等。在src/parse.c中我们会看到一行代码,net->batch /= net->subdivisions;
,也就是说batch_size
在 darknet 内部又被均分为 net->subdivisions
份, 成为更小的batch_size
。 但是这些小的 batch_size
最终又被汇总, 因此 darknet 中的batch_size = net->batch / net->subdivisions * net->subdivisions
。此外,和这个参数相关的计算训练图片数目的时候是这样,int imgs = net->batch * net->subdivisions * ngpus;
,这样可以保证imgs
可以被subdivisions
整除,因此,通常将这个参数设为8的倍数。从这里也可以看出每个gpu或者cpu都会训练batch
个样本。
我们知道了参数是什么样子,那么darknet是如何保存这些参数的呢?这就要看下基本数据结构了。
后面细讲。
后面细讲。
后面细讲。
注意,讲完数据结构之后讲前向传播和反向传播的时候会深入到每个Layer的前向传播和反向传播,细节会很多,慢慢理解慢慢讲。框架的大概思路就是这个样子,之后会按照这个主线不断的添加代码理解。
大概了解一下我会怎么去读Darknet框架,之后会按照这个主线不断的讲解,欢迎互相交流和学习。
欢迎关注GiantPandaCV, 在这里你将看到独家的深度学习分享,坚持原创,每天分享我们学习到的新鲜知识。( • ̀ω•́ )✧
有对文章相关的问题,或者想要加入交流群,欢迎添加BBuf微信: