Skip to content

wuzhihao7788/yolodet-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

0c2873d · Nov 11, 2020

History

98 Commits
Oct 30, 2020
Nov 4, 2020
Oct 23, 2020
Oct 30, 2020
Nov 11, 2020
Nov 4, 2020
Nov 4, 2020
Oct 23, 2020
Oct 23, 2020
Oct 23, 2020

Repository files navigation

简体中文 | English

YOLODet-PyTorch

YOLODet-PyTorch是端到端基于pytorch框架复现yolo最新算法的目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的训练、精度速度优化到部署全流程。YOLODet-PyTorch以模块化的设计实现了多种主流YOLO目标检测算法,并且提供了丰富的数据增强、网络组件、损失函数等模块。

目前检测库下模型均要求使用PyTorch 1.5及以上版本或适当的develop版本。

内容

简介

特性:

  • 模型丰富:

    YOLODet提供了丰富的模型,涵盖最新YOLO检测算法的复现,包含YOLOv5、YOLOv4、PP-YOLO、YOLOv3等YOLO系列目标检测算法。

  • 高灵活度:

    YOLODet通过模块化设计来解耦各个组件,基于配置文件可以轻松地搭建各种检测模型。

支持的模型:

更多的Backone:

  • DarkNet
  • CSPDarkNet
  • ResNet
  • YOLOv5Darknet

数据增强方法:

  • Mosaic
  • MixUp
  • Resize
  • LetterBox
  • RandomCrop
  • RandomFlip
  • RandomHSV
  • RandomBlur
  • RandomNoise
  • RandomAffine
  • RandomTranslation
  • Normalize
  • ImageToTensor
  • 相关配置使用说明请参考【这里

损失函数支持:

  • bbox loss (IOU,GIOU,DIOU,CIOU)
  • confidence loss(YOLOv4,YOLOv5,PP-YOLO)
  • IOU_Aware_Loss(PP-YOLO)
  • FocalLoss

训练技巧支持:

  • 指数移动平均
  • 预热
  • 梯度剪切
  • 梯度累计更新
  • 多尺度训练
  • 学习率调整:Fixed,Step,Exp,Poly,Inv,Consine
  • Label Smooth
  • 强烈说明 通过实验对比发现YOLOv5的正负样本划分定义和损失函数定义,使得模型收敛速度较快,远超原yolo系列对正负样本的划分和损失定义。对于如果卡资源不充足,想在短时间内收敛模型,可采用yolov5的正负样本划分和损失函数定义,相关参数为yolo_loss_type=yolov5
  • 额外补充 YOLOv5对于正样本的定义:在不同尺度下只要真框和给定锚框的的比值在4倍以内,该锚框即可负责预测该真值框。并根据gx,gy在grid中心点位置的偏移量会额外新增两个grid坐标来预测。通过这一系列操作,增加了正样本数量,加速模型收敛速度。而YOLO原系列对于真框,在不同尺度下只有在该尺度下IOU交并集最大的锚框负责预测该真框,其他锚框不负责,所以由于较少的正样本量,模型收敛速度较慢。

扩展特性:

  • Group Norm
  • Modulated Deformable Convolution
  • Focus
  • Spatial Pyramid Pooling
  • FPN-PAN
  • coord conv
  • drop block
  • SAM

代码结构说明

yolodet-pytorch
├──cfg              #模型配置文件所在目录(yolov5,yolov4等)
├──tools            #工具包,包含训练代码,测试代码和推断代码入口。
├──yolodet          #YOLO检测框架核心代码库
│  ├──apis          #提供检测框架的训练,测试和推断和模型保存的接口
│  ├──dataset       #包含DateSet,DateLoader和数据增强等通用方法
│  ├──models        #YOLO检测框架的核心组件集结地
│  │  ├──detectors  #所有类型检测器集结地
│  │  ├──backbones  #所有骨干网络集结地
│  │  ├──necks      #所有necks集结地
│  │  ├──heads      #heads集结地
│  │  ├──loss       #所有损失函数集结地
│  │  ├──hooks      #hooks集结地(学习率调整,模型保存,训练日志,权重更新等)
│  │  ├──utils      #所有工具方法集结地

安装说明

安装和数据集准备请参考 INSTALL.md

快速开始

请参阅 GETTING_STARTED.md 了解YOLODet的基本用法。

预训练模型

查看预训练模型请点击【这里

重要说明

由于该检测框架为个人闲暇之余,处于对深度学习的热爱,自己单独编写完成,也由于自己囊中羞涩,没有充足的显卡资源,提供的MSCOCO大型数据集的预训练模型为未完整训练的模型,后面会陆陆续续提供完整版的预训练模型,敬请大家期待。对于小型数据集本人已经测试和验证过,并在实际项目中使用过该框架训练的模型,没有问题,精度和速度都能保证。

鸣谢

如何贡献代码

欢迎你为YOLODet提供代码,也十分感谢你的反馈。本人将不断完善和改进这个基于PyTorch实现的YOLO全系列的目标检测框架,并希望更多志同道合的爱好者和从业者能参与进来,共同维护这个项目。 如有对此感兴趣的同学,可联系我的gmail邮箱:wuzhihao7788@gmail.com,期待与你一起完善和进步。

About

reproduce the YOLO series of papers in pytorch, including YOLOv4, PP-YOLO, YOLOv5,YOLOv3, etc.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published