Skip to content

Implementation of popular deep learning networks with TensorRT network definition API

License

Notifications You must be signed in to change notification settings

wang-xinyu/tensorrtx

Folders and files

NameName
Last commit message
Last commit date
Jul 11, 2024
Jun 16, 2021
Aug 19, 2022
May 23, 2021
Jan 28, 2021
Mar 7, 2024
Apr 8, 2021
Apr 28, 2021
Mar 18, 2024
Oct 18, 2024
Apr 22, 2024
Jun 11, 2021
Oct 9, 2024
Nov 6, 2020
Aug 27, 2021
Jan 28, 2021
Jun 16, 2021
Oct 9, 2022
Jul 15, 2021
Jan 10, 2022
Nov 6, 2020
Oct 9, 2024
Jan 31, 2021
Apr 19, 2023
Aug 21, 2024
Apr 2, 2021
Jan 31, 2021
Mar 11, 2022
Feb 28, 2024
Sep 27, 2023
May 6, 2021
Nov 6, 2020
Nov 6, 2020
Nov 9, 2020
Jul 6, 2022
Jun 27, 2022
Apr 23, 2021
Mar 20, 2024
Apr 19, 2023
Feb 28, 2023
Nov 6, 2020
Dec 6, 2024
Jan 11, 2023
Oct 18, 2024
Apr 26, 2021
Aug 2, 2022
May 19, 2022
Apr 26, 2021
Jan 16, 2024
Apr 10, 2024
Oct 22, 2024
Jun 21, 2024
Mar 19, 2024
Oct 18, 2024
Oct 18, 2024
Oct 18, 2024
Nov 6, 2020
Oct 22, 2024

Repository files navigation

TensorRTx

TensorRTx aims to implement popular deep learning networks with TensorRT network definition API.

Why don't we use a parser (ONNX parser, UFF parser, caffe parser, etc), but use complex APIs to build a network from scratch? I have summarized the advantages in the following aspects.

  • Flexible, easy to modify the network, add/delete a layer or input/output tensor, replace a layer, merge layers, integrate preprocessing and postprocessing into network, etc.
  • Debuggable, construct the entire network in an incremental development manner, easy to get middle layer results.
  • Educational, learn about the network structure during this development, rather than treating everything as a black box.

The basic workflow of TensorRTx is:

  1. Get the trained models from pytorch, mxnet or tensorflow, etc. Some pytorch models can be found in my repo pytorchx, the remaining are from popular open-source repos.
  2. Export the weights to a plain text file -- .wts file.
  3. Load weights in TensorRT, define the network, build a TensorRT engine.
  4. Load the TensorRT engine and run inference.

News

  • 22 Oct 2024. lindsayshuo: YOLOv8-obb
  • 18 Oct 2024. zgjja: Rafactor docker image.
  • 11 Oct 2024. mpj1234: YOLO11
  • 9 Oct 2024. Phoenix8215: GhostNet V1 and V2.
  • 21 Aug 2024. Lemonononon: real-esrgan-general-x4v3
  • 29 Jul 2024. mpj1234: Check the YOLOv5, YOLOv8 & YOLOv10 in TensorRT 10.x API, branch → trt10
  • 29 Jul 2024. mpj1234: YOLOv10
  • 21 Jun 2024. WuxinrongY: YOLOv9-T, YOLOv9-S, YOLOv9-M
  • 28 Apr 2024. lindsayshuo: YOLOv8-pose
  • 22 Apr 2024. B1SH0PP: EfficientAd: Accurate Visual Anomaly Detection at Millisecond-Level Latencies.
  • 18 Apr 2024. lindsayshuo: YOLOv8-p2
  • 12 Mar 2024. lindsayshuo: YOLOv8-cls
  • 11 Mar 2024. WuxinrongY: YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
  • 7 Mar 2024. AadeIT: CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes
  • 17 Oct 2023. Rex-LK: YOLOv8-Seg

Tutorials

Test Environment

  1. TensorRT 7.x
  2. TensorRT 8.x(Some of the models support 8.x)

How to run

Each folder has a readme inside, which explains how to run the models inside.

Models

Following models are implemented.

Name Description
mlp the very basic model for starters, properly documented
lenet the simplest, as a "hello world" of this project
alexnet easy to implement, all layers are supported in tensorrt
googlenet GoogLeNet (Inception v1)
inception Inception v3, v4
mnasnet MNASNet with depth multiplier of 0.5 from the paper
mobilenet MobileNet v2, v3-small, v3-large
resnet resnet-18, resnet-50 and resnext50-32x4d are implemented
senet se-resnet50
shufflenet ShuffleNet v2 with 0.5x output channels
squeezenet SqueezeNet 1.1 model
vgg VGG 11-layer model
yolov3-tiny weights and pytorch implementation from ultralytics/yolov3
yolov3 darknet-53, weights and pytorch implementation from ultralytics/yolov3
yolov3-spp darknet-53, weights and pytorch implementation from ultralytics/yolov3
yolov4 CSPDarknet53, weights from AlexeyAB/darknet, pytorch implementation from ultralytics/yolov3
yolov5 yolov5 v1.0-v7.0 of ultralytics/yolov5, detection, classification and instance segmentation
yolov7 yolov7 v0.1, pytorch implementation from WongKinYiu/yolov7
yolov8 yolov8, pytorch implementation from ultralytics
yolov9 The Pytorch implementation is WongKinYiu/yolov9.
yolov10 The Pytorch implementation is THU-MIG/yolov10.
yolo11 The Pytorch implementation is ultralytics.
yolop yolop, pytorch implementation from hustvl/YOLOP
retinaface resnet50 and mobilnet0.25, weights from biubug6/Pytorch_Retinaface
arcface LResNet50E-IR, LResNet100E-IR and MobileFaceNet, weights from deepinsight/insightface
retinafaceAntiCov mobilenet0.25, weights from deepinsight/insightface, retinaface anti-COVID-19, detect face and mask attribute
dbnet Scene Text Detection, weights from BaofengZan/DBNet.pytorch
crnn pytorch implementation from meijieru/crnn.pytorch
ufld pytorch implementation from Ultra-Fast-Lane-Detection, ECCV2020
hrnet hrnet-image-classification and hrnet-semantic-segmentation, pytorch implementation from HRNet-Image-Classification and HRNet-Semantic-Segmentation
psenet PSENet Text Detection, tensorflow implementation from liuheng92/tensorflow_PSENet
ibnnet IBN-Net, pytorch implementation from XingangPan/IBN-Net, ECCV2018
unet U-Net, pytorch implementation from milesial/Pytorch-UNet
repvgg RepVGG, pytorch implementation from DingXiaoH/RepVGG
lprnet LPRNet, pytorch implementation from xuexingyu24/License_Plate_Detection_Pytorch
refinedet RefineDet, pytorch implementation from luuuyi/RefineDet.PyTorch
densenet DenseNet-121, from torchvision.models
rcnn FasterRCNN and MaskRCNN, model from detectron2
tsm TSM: Temporal Shift Module for Efficient Video Understanding, ICCV2019
scaled-yolov4 yolov4-csp, pytorch from WongKinYiu/ScaledYOLOv4
centernet CenterNet DLA-34, pytorch from xingyizhou/CenterNet
efficientnet EfficientNet b0-b8 and l2, pytorch from lukemelas/EfficientNet-PyTorch
detr DE⫶TR, pytorch from facebookresearch/detr
swin-transformer Swin Transformer - Semantic Segmentation, only support Swin-T. The Pytorch implementation is microsoft/Swin-Transformer
real-esrgan Real-ESRGAN. The Pytorch implementation is real-esrgan
superpoint SuperPoint. The Pytorch model is from magicleap/SuperPointPretrainedNetwork
csrnet CSRNet. The Pytorch implementation is leeyeehoo/CSRNet-pytorch
EfficientAd EfficientAd: Accurate Visual Anomaly Detection at Millisecond-Level Latencies. From anomalib

Model Zoo

The .wts files can be downloaded from model zoo for quick evaluation. But it is recommended to convert .wts from pytorch/mxnet/tensorflow model, so that you can retrain your own model.

GoogleDrive | BaiduPan pwd: uvv2

Tricky Operations

Some tricky operations encountered in these models, already solved, but might have better solutions.

Name Description
BatchNorm Implement by a scale layer, used in resnet, googlenet, mobilenet, etc.
MaxPool2d(ceil_mode=True) use a padding layer before maxpool to solve ceil_mode=True, see googlenet.
average pool with padding use setAverageCountExcludesPadding() when necessary, see inception.
relu6 use Relu6(x) = Relu(x) - Relu(x-6), see mobilenet.
torch.chunk() implement the 'chunk(2, dim=C)' by tensorrt plugin, see shufflenet.
channel shuffle use two shuffle layers to implement channel_shuffle, see shufflenet.
adaptive pool use fixed input dimension, and use regular average pooling, see shufflenet.
leaky relu I wrote a leaky relu plugin, but PRelu in NvInferPlugin.h can be used, see yolov3 in branch trt4.
yolo layer v1 yolo layer is implemented as a plugin, see yolov3 in branch trt4.
yolo layer v2 three yolo layers implemented in one plugin, see yolov3-spp.
upsample replaced by a deconvolution layer, see yolov3.
hsigmoid hard sigmoid is implemented as a plugin, hsigmoid and hswish are used in mobilenetv3
retinaface output decode implement a plugin to decode bbox, confidence and landmarks, see retinaface.
mish mish activation is implemented as a plugin, mish is used in yolov4
prelu mxnet's prelu activation with trainable gamma is implemented as a plugin, used in arcface
HardSwish hard_swish = x * hard_sigmoid, used in yolov5 v3.0
LSTM Implemented pytorch nn.LSTM() with tensorrt api

Speed Benchmark

Models Device BatchSize Mode Input Shape(HxW) FPS
YOLOv3-tiny Xeon E5-2620/GTX1080 1 FP32 608x608 333
YOLOv3(darknet53) Xeon E5-2620/GTX1080 1 FP32 608x608 39.2
YOLOv3(darknet53) Xeon E5-2620/GTX1080 1 INT8 608x608 71.4
YOLOv3-spp(darknet53) Xeon E5-2620/GTX1080 1 FP32 608x608 38.5
YOLOv4(CSPDarknet53) Xeon E5-2620/GTX1080 1 FP32 608x608 35.7
YOLOv4(CSPDarknet53) Xeon E5-2620/GTX1080 4 FP32 608x608 40.9
YOLOv4(CSPDarknet53) Xeon E5-2620/GTX1080 8 FP32 608x608 41.3
YOLOv5-s v3.0 Xeon E5-2620/GTX1080 1 FP32 608x608 142
YOLOv5-s v3.0 Xeon E5-2620/GTX1080 4 FP32 608x608 173
YOLOv5-s v3.0 Xeon E5-2620/GTX1080 8 FP32 608x608 190
YOLOv5-m v3.0 Xeon E5-2620/GTX1080 1 FP32 608x608 71
YOLOv5-l v3.0 Xeon E5-2620/GTX1080 1 FP32 608x608 43
YOLOv5-x v3.0 Xeon E5-2620/GTX1080 1 FP32 608x608 29
YOLOv5-s v4.0 Xeon E5-2620/GTX1080 1 FP32 608x608 142
YOLOv5-m v4.0 Xeon E5-2620/GTX1080 1 FP32 608x608 71
YOLOv5-l v4.0 Xeon E5-2620/GTX1080 1 FP32 608x608 40
YOLOv5-x v4.0 Xeon E5-2620/GTX1080 1 FP32 608x608 27
RetinaFace(resnet50) Xeon E5-2620/GTX1080 1 FP32 480x640 90
RetinaFace(resnet50) Xeon E5-2620/GTX1080 1 INT8 480x640 204
RetinaFace(mobilenet0.25) Xeon E5-2620/GTX1080 1 FP32 480x640 417
ArcFace(LResNet50E-IR) Xeon E5-2620/GTX1080 1 FP32 112x112 333
CRNN Xeon E5-2620/GTX1080 1 FP32 32x100 1000

Help wanted, if you got speed results, please add an issue or PR.

Acknowledgments & Contact

Any contributions, questions and discussions are welcomed, contact me by following info.

E-mail: wangxinyu_es@163.com

WeChat ID: wangxinyu0375 (可加我微信进tensorrtx交流群,备注:tensorrtx)