https://blog.csdn.net/tianyunzqs/article/details/103692986?spm=1001.2014.3001.5502
class sklearn.tree.DecisionTreeClassifier(
criterion=’gini’, # 该函数用于衡量分割的依据。常见的有"gini"用来计算基尼系数和"entropy"用来计算信息增益
splitter=’best’,
max_depth=None, # 树的最大深度
min_samples_split=2, # 分割内部节点所需的最小样本数
min_samples_leaf=1, # 叶节点上所需的最小样本数
min_weight_fraction_leaf=0.0,
max_features=None,
random_state=None,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None,
class_weight=None,
presort=False
)