Skip to content

A pytorch implementation of the Domain Transfer Network (DTN), Unsupervised Cross-Domain Image Generation

Notifications You must be signed in to change notification settings

taey16/DomainTransferNetwork.pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Apr 7, 2017
121e018 · Apr 7, 2017

History

24 Commits
Apr 6, 2017
Apr 6, 2017
Apr 6, 2017
Apr 7, 2017
Apr 6, 2017
Apr 6, 2017

Repository files navigation

Domain Transfer Networks (DTN)

Install

Run

  • Train function f in source domain(SVHN), first

  • CUDA_VISIBLE_DEVICES=x python main_recog.py --dataset svhn --dataroot /path/to/svhn/extra/ --valDataroot /path/to/svhn/test/ --exp recog_svhn

  • Datasets will be downloaded automatically in the paths you specified

  • Resulting model is saved in recog_svhn directory named like netE_epoch_xx.pth

  • You will reach at ~95.xx % of accuracy.

  • And then, train DTN

  • CUDA_VISIBLE_DEVICES=x python main_dtnetgan.py --datasetA svhn --datarootA /path/to/svhn/extra/ --valDatarootA /path/to/svhn/test/ --datasetB mnist --datarootB /path/to/mnist/train/ --valDatarootB /path/to/test/ --netE /path/to/previously/trained/model/netE_epoch_xx.pth --exp S2M --crossentropy

Results (Domain transfer)

  • Randomly selected samples in source domain source domain

  • Domain transferred samples from corresponding inputs generated

Results (Style transfer)

  • Style transfer as a specific case of the domain transfer
  • not yet implemented

NOTE

  • We used crossentropy loss computing L_CONST (i.e. Eq.5 in the paper)
  • This idea was borrowed from Plug-and-Play Generative Network
  • You can easily change direction of domain transfer such that MNIST to SVHN
  • CUDA_VISIBLE_DEVICES=x python main_recog.py --dataset mnist --dataroot /path/to/mnist/train/ --valDataroot /path/to/mnist/test/ --exp recog_mnist
  • CUDA_VISIBLE_DEVICES=x python main_dtnetgan.py --datasetA mnist --datarootA /path/to/mnist/train/ --valDatarootA /path/to/mnist/test/ --datasetB svhn --datarootB /path/to/svhn/extra/ --valDatarootB /path/to/svhn/test/ --netE /path/to/pretrained/model/netE_epoch_xx.pth --exp M2S

Reference

About

A pytorch implementation of the Domain Transfer Network (DTN), Unsupervised Cross-Domain Image Generation

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages