Skip to content

mostly-ai/mostlyai-qa

Folders and files

NameName
Last commit message
Last commit date

Latest commit

a13a117 Β· May 16, 2025
Apr 11, 2025
May 11, 2025
May 11, 2025
May 16, 2025
May 12, 2025
Dec 17, 2024
Apr 17, 2025
Feb 4, 2025
Nov 14, 2024
Feb 11, 2025
Apr 14, 2025
May 11, 2025
May 16, 2025
May 16, 2025

Repository files navigation

Synthetic Data Quality Assurance πŸ”Ž

Documentation stats license GitHub Release PyPI - Python Version

Documentation | Sample Reports | Technical White Paper

Assess the fidelity and novelty of synthetic samples with respect to original samples:

  1. calculate a rich set of accuracy, similarity and distance metrics
  2. visualize statistics for easy comparison to training and holdout samples
  3. generate a standalone, easy-to-share, easy-to-read HTML summary report

...all with a few lines of Python code πŸ’₯.

mostlyai-qa.mp4

Installation

The latest release of mostlyai-qa can be installed via pip:

pip install -U mostlyai-qa

On Linux, one can explicitly install the CPU-only variant of torch together with mostlyai-qa:

pip install -U torch==2.6.0+cpu torchvision==0.21.0+cpu mostlyai-qa --extra-index-url https://download.pytorch.org/whl/cpu

Quick Start

import pandas as pd
import webbrowser
from mostlyai import qa

# initialize logging to stdout
qa.init_logging()

# fetch original + synthetic data
base_url = "https://github.com/mostly-ai/mostlyai-qa/raw/refs/heads/main/examples/quick-start"
syn = pd.read_csv(f"{base_url}/census2k-syn_mostly.csv.gz")
# syn = pd.read_csv(f'{base_url}/census2k-syn_flip30.csv.gz') # a 30% perturbation of trn
trn = pd.read_csv(f"{base_url}/census2k-trn.csv.gz")
hol = pd.read_csv(f"{base_url}/census2k-hol.csv.gz")

# calculate metrics
report_path, metrics = qa.report(
    syn_tgt_data=syn,
    trn_tgt_data=trn,
    hol_tgt_data=hol,
)

# pretty print metrics
print(metrics.model_dump_json(indent=4))

# open up HTML report in new browser window
webbrowser.open(f"file://{report_path.absolute()}")

Basic Usage

from mostlyai import qa

# initialize logging to stdout
qa.init_logging()

# analyze single-table data
report_path, metrics = qa.report(
    syn_tgt_data = synthetic_df,
    trn_tgt_data = training_df,
    hol_tgt_data = holdout_df,  # optional
)

# analyze sequential data
report_path, metrics = qa.report(
    syn_tgt_data = synthetic_df,
    trn_tgt_data = training_df,
    hol_tgt_data = holdout_df,  # optional
    tgt_context_key = "user_id",
)

# analyze sequential data with context
report_path, metrics = qa.report(
    syn_tgt_data = synthetic_df,
    trn_tgt_data = training_df,
    hol_tgt_data = holdout_df,  # optional
    syn_ctx_data = synthetic_context_df,
    trn_ctx_data = training_context_df,
    hol_ctx_data = holdout_context_df,  # optional
    ctx_primary_key = "id",
    tgt_context_key = "user_id",
)

Sample Reports

Citation

Please consider citing our project if you find it useful:

@misc{mostlyai-qa,
      title={Benchmarking Synthetic Tabular Data: A Multi-Dimensional Evaluation Framework},
      author={Andrey Sidorenko and Michael Platzer and Mario Scriminaci and Paul Tiwald},
      year={2025},
      eprint={2504.01908},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2504.01908},
}