Skip to content

lyhue1991/eat_pytorch_in_20_days

Folders and files

NameName
Last commit message
Last commit date
Jun 27, 2020
Jan 2, 2023
Sep 11, 2024
Nov 26, 2024
Nov 26, 2024
Feb 24, 2025
Feb 25, 2025
Nov 28, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Nov 28, 2024
Nov 29, 2024
Sep 11, 2024
Nov 29, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Jun 27, 2020
Aug 2, 2024
Sep 11, 2024
Sep 11, 2024
Aug 2, 2023
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024
Sep 11, 2024

Repository files navigation

How to eat Pytorch in 20 days ?🔥🔥

一,本书📖面向读者 👼

本书假定读者有一定的机器学习和深度学习基础,使用过Keras或TensorFlow或Pytorch搭建训练过简单的模型。

🔥🔥号外号外,《20天吃掉那只Pytorch》视频版本登录BiliBili啦,吃货本货倾情掌勺,只为最纯正的乡土味道,欢迎新老朋友前来品尝 🍉🍉!

https://www.bilibili.com/video/BV1Ua411P7oe

二,本书写作风格 🍉

本书是一本对人类用户极其友善的Pytorch入门工具书,Don't let me think是本书的最高追求。

本书主要是在参考Pytorch官方文档和函数doc文档基础上整理写成的。

尽管Pytorch官方文档已经相当简明清晰,但本书在篇章结构和范例选取上做了大量的优化,在用户友好度方面更胜一筹。

本书按照内容难易程度、读者检索习惯和Pytorch自身的层次结构设计内容,循序渐进,层次清晰,方便按照功能查找相应范例。

本书在范例设计上尽可能简约化和结构化,增强范例易读性和通用性,大部分代码片段在实践中可即取即用。

如果说通过学习Pytorch官方文档掌握Pytorch的难度大概是5,那么通过本书学习掌握Pytorch的难度应该大概是2.

仅以下图对比Pytorch官方文档与本书《20天吃掉那只Pytorch》的差异。

三,本书学习方案 ⏰

1,学习计划

本书是作者利用工作之余大概3个月写成的,大部分读者应该在20天可以完全学会。

预计每天花费的学习时间在30分钟到2个小时之间。

当然,本书也非常适合作为Pytorch的工具手册在工程落地时作为范例库参考。

点击学习内容蓝色标题即可进入该章节。

日期 学习内容 内容难度 预计学习时间 更新状态
  一、Pytorch的建模流程 ⭐️ 0hour
day1 1-1,结构化数据建模流程范例 ⭐️⭐️⭐️ 1hour
day2 1-2,图片数据建模流程范例 ⭐️⭐️⭐️⭐️ 2hour
day3 1-3,文本数据建模流程范例 ⭐️⭐️⭐️⭐️⭐️ 2hour
day4 1-4,时间序列数据建模流程范例 ⭐️⭐️⭐️⭐️⭐️ 2hour
  二、Pytorch的核心概念 ⭐️ 0hour
day5 2-1,张量数据结构 ⭐️⭐️⭐️⭐️ 1hour
day6 2-2,自动微分机制 ⭐️⭐️⭐️ 1hour
day7 2-3,动态计算图 ⭐️⭐️⭐️⭐️⭐️ 2hour
  三、Pytorch的层次结构 ⭐️ 0hour
day8 3-1,低阶API示范 ⭐️⭐️⭐️⭐️ 1hour
day9 3-2,中阶API示范 ⭐️⭐️⭐️ 1hour
day10 3-3,高阶API示范 ⭐️⭐️⭐️ 1hour
  四、Pytorch的低阶API ⭐️ 0hour
day11 4-1,张量的结构操作 ⭐️⭐️⭐️⭐️⭐️ 2hour
day12 4-2,张量的数学运算 ⭐️⭐️⭐️⭐️ 1hour
day13 4-3,nn.functional和nn.Module ⭐️⭐️⭐️⭐️ 1hour
  五、Pytorch的中阶API ⭐️ 0hour
day14 5-1,Dataset和DataLoader ⭐️⭐️⭐️⭐️ 1hour
day15 5-2,模型层 ⭐️⭐️⭐️⭐️⭐️ 2hour
day16 5-3,损失函数 ⭐️⭐️⭐️⭐️ 1hour
day17 5-4,TensorBoard可视化 ⭐️⭐️⭐️ 1hour
  六、Pytorch的高阶API ⭐️ 0hour
day18 6-1,构建模型的3种方法 ⭐️⭐️ 0.5hour
day19 6-2,训练模型的3种方法 ⭐️⭐️⭐️ 1hour
day20 6-3,使用GPU训练模型 ⭐️⭐️⭐️⭐️ 1hour
* 后记:我的产品观 ⭐️ 0hour

2,学习环境

本书全部源码在jupyter中编写测试通过,建议通过git克隆到本地,并在jupyter中交互式运行学习。

step1: 克隆本书源码到本地,使用码云镜像仓库国内下载速度更快

git clone https://gitee.com/Python_Ai_Road/eat_pytorch_in_20_days

step2: 公众号 算法美食屋 回复关键词:pytorch, 获取本项目所用数据集汇总压缩包 eat_pytorch_datasets.zip百度云盘下载链接,下载解压并移动到eat_pytorch_in_20_days路径下,约160M。

import torch 
from torch import nn

print("torch version:", torch.__version__)

a = torch.tensor([[2,1]])
b = torch.tensor([[-1,2]])
c = a@b.t()
print("[[2,1]]@[[-1],[2]] =", c.item())
torch version: 2.0.1
[[2,1]]@[[-1],[2]] = 0

四,项目更新记录

1,2022-08🎈🎈更新 pytorch与广告推荐章节

适合对广告推荐领域感兴趣,且需要进阶的同学😋😋

日期 学习内容 内容难度 预计学习时间 更新状态
  七、Pytorch与广告推荐 ⭐️ 0hour
day1 7-1,推荐算法业务 ⭐️⭐️⭐️ 0.5hour
day2 7-2,广告算法业务 ⭐️⭐️⭐️ 0.5hour
day3 7-3,FM模型 ⭐️⭐️⭐️ 1hour
day4 7-4,DeepFM模型 ⭐️⭐️⭐️⭐️ 1hour
day5 7-5,FiBiNET模型 ⭐️⭐️⭐️⭐️ 2hour
day6 7-6,DeepCross模型 ⭐️⭐️⭐️⭐️⭐️ 2hour
day7 7-7,DIN网络 ⭐️⭐️⭐️⭐️⭐️ 2hour
day8 7-8,DIEN网络 ⭐️⭐️⭐️⭐️⭐️ 2hour

2,2023-03🎈🎈更新 彩蛋章节

介绍一些与pytorch相关的周边工具

日期 学习内容 内容难度 预计学习时间 更新状态
  彩蛋:Pytorch周边工具 ⭐️ 0hour
day1 A-1, Kaggle免费GPU使用攻略 ⭐️⭐️⭐️ 1hour
day2 A-2, Streamlit构建机器学习应用 ⭐️⭐️⭐️ 1hour
day3 A-3, 使用Mac M1芯片加速pytorch ⭐️⭐️⭐️ 1hour
day4 A-4, optuna可视化调参魔法指南 ⭐️⭐️⭐️⭐️ 1hour
day5 A-5, gradio让你的机器学习模型性感起来 ⭐️⭐️⭐️⭐️ 1hour
day6 A-6, wandb模型可视化分析 ⭐️⭐️⭐️⭐ 0.5hour
day7 A-7, wandb模型可视化自动调参 ⭐️⭐️⭐️⭐ 1hour

3, 2023-07🎈🎈更新pytorch模型训练工具库torchkeras

相关章节代码进行了对应优化调整。

功能 稳定支持起始版本 依赖或借鉴库
✅ 训练进度条 3.0.0 依赖tqdm,借鉴keras
✅ 训练评估指标 3.0.0 借鉴pytorch_lightning
✅ notebook中训练自带可视化 3.8.0 借鉴fastai
✅ early stopping 3.0.0 借鉴keras
✅ gpu training 3.0.0 依赖accelerate
✅ multi-gpus training(ddp) 3.6.0 依赖accelerate
✅ fp16/bf16 training 3.6.0 依赖accelerate
✅ tensorboard callback 3.7.0 依赖tensorboard
✅ wandb callback 3.7.0 依赖wandb

详情参考项目链接::https://github.com/lyhue1991/torchkeras

五,鼓励和联系作者 🎈🎈

如果本书对你有所帮助,想鼓励一下作者,记得给本项目加一颗星星star⭐️,并分享给你的朋友们喔😊!

如果对本书内容理解上有一些疑问或者建议,可以在公众号"算法美食屋"后台回复关键字:加群,加入读者交流群和大家讨论。

算法美食屋logo.png

About

Pytorch🍊🍉 is delicious, just eat it! 😋😋

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published