Skip to content

haampie/ArnoldiMethod.jl

This branch is 2 commits ahead of, 21 commits behind JuliaLinearAlgebra/ArnoldiMethod.jl:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Feb 13, 2024
60c4d60 · Feb 13, 2024
Feb 12, 2024
Feb 13, 2024
Feb 13, 2024
Feb 13, 2024
Feb 13, 2024
Feb 18, 2021
Feb 12, 2024
Feb 12, 2024
Aug 12, 2018
Feb 12, 2024
Feb 13, 2024

Repository files navigation

ArnoldiMethod.jl

CI Codecov

The Arnoldi Method with Krylov-Schur restart, natively in Julia.

Docs

Stable docs Latest docs

Goal

Make eigs an efficient and native Julia function.

Installation

Open the package manager in the REPL via ] and run

(v1.6) pkg> add ArnoldiMethod

Example

julia> using ArnoldiMethod, LinearAlgebra, SparseArrays

julia> A = spdiagm(
           -1 => fill(-1.0, 99),
            0 => fill(2.0, 100), 
            1 => fill(-1.0, 99)
       );

julia> decomp, history = partialschur(A, nev=10, tol=1e-6, which=:SR);

julia> decomp
PartialSchur decomposition (Float64) of dimension 10
eigenvalues:
10-element Array{Complex{Float64},1}:
 0.0009674354160236865 + 0.0im
  0.003868805732811139 + 0.0im
  0.008701304061962657 + 0.0im
   0.01546025527344699 + 0.0im
  0.024139120518486677 + 0.0im
    0.0347295035554728 + 0.0im
   0.04722115887278571 + 0.0im
   0.06160200160067088 + 0.0im
    0.0778581192025522 + 0.0im
   0.09597378493453936 + 0.0im

julia> history
Converged: 10 of 10 eigenvalues in 174 matrix-vector products

julia> norm(A * decomp.Q - decomp.Q * decomp.R)
6.39386920955869e-8

julia> λs, X = partialeigen(decomp);

julia> norm(A * X - X * Diagonal(λs))
6.393869211477937e-8

About

Implicitly Restarted Arnoldi Method, natively in Julia

Resources

License

Citation

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Julia 100.0%