Skip to content

Files

Latest commit

8f22855 · May 3, 2024

History

History

PointRend

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
May 7, 2021
May 24, 2022
May 7, 2021
May 3, 2024

PointRend: Image Segmentation as Rendering

Alexander Kirillov, Yuxin Wu, Kaiming He, Ross Girshick

[arXiv] [BibTeX]


In this repository, we release code for PointRend in Detectron2. PointRend can be flexibly applied to both instance and semantic segmentation tasks by building on top of existing state-of-the-art models.

Quick start and visualization

This Colab Notebook tutorial contains examples of PointRend usage and visualizations of its point sampling stages.

Training

To train a model with 8 GPUs run:

cd /path/to/detectron2/projects/PointRend
python train_net.py --config-file configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml --num-gpus 8

Evaluation

Model evaluation can be done similarly:

cd /path/to/detectron2/projects/PointRend
python train_net.py --config-file configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml --eval-only MODEL.WEIGHTS /path/to/model_checkpoint

Pretrained Models

Instance Segmentation

COCO

Mask
head
Backbone lr
sched
Output
resolution
mask
AP
mask
AP*
model id download
PointRend R50-FPN 224×224 36.2 39.7 164254221 model | metrics
PointRend R50-FPN 224×224 38.3 41.6 164955410 model | metrics
PointRend R101-FPN 224×224 40.1 43.8 model | metrics
PointRend X101-FPN 224×224 41.1 44.7 model | metrics

AP* is COCO mask AP evaluated against the higher-quality LVIS annotations; see the paper for details. Run python detectron2/datasets/prepare_cocofied_lvis.py to prepare GT files for AP* evaluation. Since LVIS annotations are not exhaustive, lvis-api and not cocoapi should be used to evaluate AP*.

Cityscapes

Cityscapes model is trained with ImageNet pretraining.

Mask
head
Backbone lr
sched
Output
resolution
mask
AP
model id download
PointRend R50-FPN 224×224 35.9 164255101 model | metrics

Semantic Segmentation

Cityscapes

Cityscapes model is trained with ImageNet pretraining.

Method Backbone Output
resolution
mIoU model id download
SemanticFPN + PointRend R101-FPN 1024×2048 78.9 202576688 model | metrics

Citing PointRend

If you use PointRend, please use the following BibTeX entry.

@InProceedings{kirillov2019pointrend,
  title={{PointRend}: Image Segmentation as Rendering},
  author={Alexander Kirillov and Yuxin Wu and Kaiming He and Ross Girshick},
  journal={ArXiv:1912.08193},
  year={2019}
}

Citing Implicit PointRend

If you use Implicit PointRend, please use the following BibTeX entry.

@InProceedings{cheng2021pointly,
  title={Pointly-Supervised Instance Segmentation,
  author={Bowen Cheng and Omkar Parkhi and Alexander Kirillov},
  journal={ArXiv},
  year={2021}
}