Skip to content
/ MAGNN Public

Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding

Notifications You must be signed in to change notification settings

cynricfu/MAGNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Sep 27, 2020
b8557f5 · Sep 27, 2020

History

7 Commits
Feb 10, 2020
Jan 4, 2020
Jan 4, 2020
Jan 4, 2020
Apr 3, 2020
Feb 10, 2020
Feb 10, 2020
Sep 27, 2020
Feb 10, 2020
Feb 10, 2020
Feb 10, 2020

Repository files navigation

MAGNN

This repository provides a reference implementation of MAGNN as described in the paper:

MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding.
Xinyu Fu, Jiani Zhang, Ziqiao Meng, Irwin King.
The Web Conference, 2020.

Available at arXiv:2002.01680.

Dependencies

Recent versions of the following packages for Python 3 are required:

  • PyTorch 1.2.0
  • DGL 0.3.1
  • NetworkX 2.3
  • scikit-learn 0.21.3
  • NumPy 1.17.2
  • SciPy 1.3.1

Dependencies for the preprocessing code are not listed here.

Datasets

The preprocessed datasets are available at:

The GloVe word vectors are obtained from GloVe. Here is the direct link for the version we used in DBLP preprocessing.

Usage

  1. Create checkpoint/ and data/preprocessed directories
  2. Extract the zip file downloaded from the section above to data/preprocessed
    • E.g., extract the content of IMDB_processed.zip to data/preprocessed/IMDB_processed
  3. Execute one of the following three commands from the project home directory:
    • python run_IMDB.py
    • python run_DBLP.py
    • python run_LastFM.py

For more information about the available options of the model, you may check by executing python run_IMDB.py --help

Citing

If you find MAGNN useful in your research, please cite the following paper:

@inproceedings{fu2020magnn,
 title={MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding},
 author={Xinyu Fu and Jiani Zhang and Ziqiao Meng and Irwin King},
 booktitle = {WWW},
 year={2020}
}

Releases

No releases published

Packages

No packages published