Skip to content

Files

Latest commit

Jul 14, 2019
f41c7b3 · Jul 14, 2019

History

History
43 lines (22 loc) · 5.52 KB

74.md

File metadata and controls

43 lines (22 loc) · 5.52 KB

8.2 微分反函数

原文: http://math.mit.edu/~djk/calculus_beginners/chapter08/section02.html

第一个好消息是,即使没有通用的方法来计算给定参数的函数反函数的,也有一个简单的公式导数的根据 本身的导数, 的倒数。

实际上, 的导数是 导数的倒数,其参数和值相反。

这在几何上或多或少是显而易见的。函数 的导数是 ,而 的任何反函数的导数是 ,如果在 值处进行评估,它将是 值的前者的倒数

让我们用代数来证明这一点。我们所要做的就是将链规则应用于 的定义属性,即 。根据链规则,我们在 评估了

这意味着反函数的导数是函数本身的导数的倒数,在反函数的值处进行计算。

这个论点似乎很简单,但令人困惑。您是否可以使用此规则实际找到反转的导数而不必疯狂?

让我们看看这对指数函数及其反函数 意味着什么。指数函数的导数本身就是 。那么对数函数的导数 是指数的倒数,在 评估;这是 ,即 。后一种说法来自于逆的定义,它告诉我们

类似地,对于正弦函数,由于其在参数 处的导数是 的导数是其余弦的倒数,或

你可以把它留在那,但我们通常把它减少到稍微不那么丑的东西。电子表格与我们在下一段中最终得到的结果一样满意。顺便说一下,无论我输入= acos(A6),我的电子表格都会给出参数 A6 的 arcccosine 函数。

正如我们在第 7 章中所见, ,我们发现 ,其倒数是 的导数。

类似地, 的导数是 。这因此告诉 的导数是在参数 处评估的导数。这是

这是完全相同的结果 ,它适用于整数幂,

事实上,对于任何理性的力量, ,正面或负面,我们都有

我们已经提到关于反函数的另一条好消息。 即使没有明显的方法来计算一个特定的值,在一个特定的参数,有一个简单的方法来计算 的值,你可以在一分钟左右实际执行一次电子表格你知道怎么做,假设你知道如何计算 。您所要做的就是在执行 散点图时反转 列的顺序。通过这样做,您可以看到结果给出了“多值函数”而不是普通函数,并且可以为逆向选择您喜欢的单值范围。

练习:

8.3 使用上面证明的事实, 找到 。 (您可以使用多重出现规则或产品规则)

8.4 角度 的正切,表示为 ,是由正弦除以余弦给出的比率: 的导数是什么?从中找到 的导数(称为 的反正切), 的反函数,(当 的域被限制为从 时)。