Skip to content

TuSimple/DarkRank

Folders and files

NameName
Last commit message
Last commit date

Latest commit

5e6a74f · Apr 18, 2018

History

3 Commits
Apr 18, 2018
Apr 18, 2018
Apr 18, 2018
Apr 18, 2018
Apr 18, 2018
Apr 18, 2018
Apr 18, 2018
Apr 18, 2018

Repository files navigation

Introduction

This is the repo for our AAAI-18 paper "DarkRank: Accelerating Deep Metric Learning via Cross Sample Similarities" If you found this useful, please cite our paper.

Preparing MXNet

  1. make a working directory
mkdir darkrank
  1. clone the lastest stable mxnet
git clone --recursive https://github.com/apache/incubator-mxnet.git mxnet-darkrank
  1. clone LSoftmax from luoyetx
git clone https://github.com/luoyetx/mx-lsoftmax.git lsoftmax
  1. copy LSoftmax to mxnet
cp lsoftmax/operator/lsoftmax-inl.h lsoftmax/operator/lsoftmax.cc lsoftmax/operator/lsoftmax.cu mxnet-darkrank/src/operator/
  1. install dependency and make mxnet
sudo apt-get update
sudo apt-get install -y build-essential git
sudo apt-get install -y libopenblas-dev liblapack-dev
sudo apt-get install -y libopencv-dev
cd mxnet-darkrank
make -j $(nproc) USE_OPENCV=1 USE_BLAS=openblas USE_CUDA=1 USE_CUDA_PATH=/usr/local/cuda USE_CUDNN=1
  1. install mxnet
pip install -e mxnet-darkrank/python 
  1. clone darkrank

Preparing Data

  1. Download Market-1501-v15.09.15.zip from http://www.liangzheng.org/Project/project_reid.html
  2. unzip Market-1501-v15.09.15.zip into data directory
  3. run generate_rec.sh

Training

  1. download imagenet pretrain
wget http://data.dmlc.ml/models/imagenet/inception-bn/Inception-BN-0126.params -O models/inception-bn-0126.params
wget http://data.dmlc.ml/models/imagenet/nin/nin-0000.params -O models/nin-0000.params
  1. teacher baseline
python reid.py --mode inception-cls-LMNN-Market1501 --even-iter --data-dir data/Market-list --num-examples 13314 --num-id 751 --lr 0.01 --num-epochs 100 --train-file train --student-network inception-bn --student-params-prefix inception-bn --student-params-epoch 126 --gpus 0
  1. student baseline
python reid.py --mode nin-cls-LMNN-Market1501 --even-iter --data-dir data/Market-list --num-examples 13314 --num-id 751 --lr 0.01 --num-epochs 100 --train-file train --student-network nin-head-bn --student-params-prefix nin --student-params-epoch 0 --gpus 0
  1. darkrank
python reid.py --mode distill-listnet-Market1501 --even-iter --data-dir data/Market-list --num-examples 13314 --num-id 751 --num-epochs 100 --train-file train --student-network nin-head-bn --student-params-prefix nin --student-params-epoch 0 --teacher-network inception-bn --teacher-params-prefix inception-cls-LMNN-Market1501-1524036667 --teacher-params-epoch 100 --lr 5e-4 --score-power 2.0 --embedding-l2-norm 3.5 --list-length 4 --loss-weight-listnet 16.0 --gpus 0

Testing

extract 1024d l2_norm_output and do standard test

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published