You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
sce_milo <- calcNhoodDistance(sce_milo, d=50)
Error: (converted from warning) 'as(, "dgCMatrix")' is deprecated.
Use 'as(., "CsparseMatrix")' instead.
See help("Deprecated") and help("Matrix-deprecated").
My seurat version is 4.4.0 and matrix version is 1.6-1.1
------------------ 原始邮件 ------------------
发件人: "MarioniLab/miloR" ***@***.***>;
发送时间: 2024年3月15日(星期五) 下午4:44
***@***.***>;
***@***.******@***.***>;
主题: Re: [MarioniLab/miloR] Error: (converted from warning) 'as(<dgTMatrix>, "dgCMatrix")' is deprecated. (Issue #314)
Please always include the output of your sessionInfo() in any issue.
—
Reply to this email directly, view it on GitHub, or unsubscribe.
You are receiving this because you authored the thread.Message ID: ***@***.***>
I am facing the same questions here, any solutions now?
Here is the sessionInfo()
sessionInfo()
R version 4.2.1 (2022-06-23 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)
The simplest solution is that you don't need to calculate nhood distances any more. Use the newer refinement_scheme="graph" for makeNhoods and fdr.weighting="graph-overlap" for testNhoods.
It's not work for me, the same error still comes up.
R version 4.3.1 (2023-06-16)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.6 LTS
Hi! Facing the same issue here. When I run data_T1_milo <- calcNhoodDistance(data_T1_milo, d=30, reduced.dim = "PCA")
I get Error in Matrix.DeprecatedCoerce(cd1, cd2) : (converted from warning) 'as(<dgTMatrix>, "dgCMatrix")' is deprecated. Use 'as(., "CsparseMatrix")' instead. See help("Deprecated") and help("Matrix-deprecated").
My sessionInfo() is the following one:
`R version 4.4.1 (2024-06-14)
Platform: x86_64-apple-darwin20
Running under: macOS Sonoma 14.2.1
Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
And in the easiest solution that @MikeDMorgan commented about using the newer refinement_scheme="graph" for makeNhoods and fdr.weighting="graph-overlap" for testNhoods, should I just not run calcNhoodDistance() function and proceed with the pipeline?
Thank you so much for your time and for this incredible tool,
Activity
MikeDMorgan commentedon Mar 15, 2024
Please always include the output of your
sessionInfo()
in any issue.Lil-5 commentedon Mar 17, 2024
DingtaoHu commentedon Mar 24, 2024
I am facing the same questions here, any solutions now?
Here is the sessionInfo()
sessionInfo()
R version 4.2.1 (2022-06-23 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)
Matrix products: default
locale:
[1] LC_COLLATE=Chinese (Simplified)_China.utf8 LC_CTYPE=Chinese (Simplified)_China.utf8
[3] LC_MONETARY=Chinese (Simplified)_China.utf8 LC_NUMERIC=C
[5] LC_TIME=Chinese (Simplified)_China.utf8
attached base packages:
[1] splines stats4 stats graphics grDevices datasets utils methods base
other attached packages:
[1] scales_1.2.1 scater_1.26.1 scuttle_1.8.4 ggbeeswarm_0.7.2
[5] SeuratWrappers_0.3.4 SingleCellExperiment_1.20.1 SummarizedExperiment_1.28.0 GenomicRanges_1.50.2
[9] GenomeInfoDb_1.34.9 MatrixGenerics_1.10.0 matrixStats_1.0.0 miloR_1.99.12
[13] edgeR_3.40.2 limma_3.54.2 scRNAtoolVis_0.0.7 ClusterGVis_0.1.1
[17] monocle_2.26.0 DDRTree_0.1.5 irlba_2.3.5.1 VGAM_1.1-9
[21] CytoTRACE_0.3.3 SeuratDisk_0.0.0.9021 presto_1.0.0 qs_0.25.7
[25] org.Hs.eg.db_3.16.0 AnnotationDbi_1.60.2 IRanges_2.32.0 S4Vectors_0.36.2
[29] Biobase_2.58.0 BiocGenerics_0.44.0 harmony_1.2.0 Rcpp_1.0.11
[33] SCP_0.5.1 Matrix_1.6-5 UCell_2.2.0 clusterProfiler_4.6.2
[37] AUCell_1.20.2 ggpubr_0.6.0 phylogram_2.1.0 data.table_1.14.8
[41] reshape2_1.4.4 cowplot_1.1.1 vctrs_0.6.3 rlang_1.1.1
[45] patchwork_1.1.3 lubridate_1.9.3 forcats_1.0.0 stringr_1.5.0
[49] dplyr_1.1.2 purrr_1.0.2 readr_2.1.5 tidyr_1.3.0
[53] tibble_3.2.1 ggplot2_3.4.3 tidyverse_2.0.0 Seurat_5.0.3
[57] SeuratObject_5.0.1 sp_2.0-0 RColorBrewer_1.1-3
loaded via a namespace (and not attached):
[1] ggh4x_0.2.8 graphlayouts_1.0.0 pbapply_1.7-2 lattice_0.21-8
[5] GSVA_1.46.0 fastICA_1.2-4 jjAnno_0.0.3 usethis_2.2.2
[9] ggcirclize_0.0.2 blob_1.2.4 survival_3.5-5 nloptr_2.0.3
[13] spatstat.data_3.0-1 later_1.3.1 DBI_1.1.3 R.utils_2.12.2
[17] rappdirs_0.3.3 uwot_0.1.16 jpeg_0.1-10 zlibbioc_1.44.0
[21] htmlwidgets_1.6.2 GlobalOptions_0.1.2 future_1.33.0 hdf5r_1.3.9
[25] leiden_0.4.3 parallel_4.2.1 tidygraph_1.2.3 KernSmooth_2.23-22
[29] promises_1.2.1 DelayedArray_0.24.0 pkgload_1.3.2.1 dbscan_1.1-12
[33] magick_2.8.3 graph_1.76.0 RcppParallel_5.1.7 RSpectra_0.16-1
[37] fs_1.6.3 fastmatch_1.1-4 digest_0.6.33 png_0.1-8
[41] qlcMatrix_0.9.7 sctransform_0.4.1 scatterpie_0.2.1 DOSE_3.24.2
[45] slingshot_2.6.0 ggraph_2.1.0 docopt_0.7.1 pkgconfig_2.0.3
[49] GO.db_3.16.0 spatstat.random_3.1-5 ggnewscale_0.4.9 DelayedMatrixStats_1.20.0
[53] minqa_1.2.6 iterators_1.0.14 reticulate_1.31 circlize_0.4.15
[57] spam_2.9-1 beeswarm_0.4.0 GetoptLong_1.0.5 zoo_1.8-12
[61] tidyselect_1.2.0 ica_1.0-3 gson_0.1.0 viridisLite_0.4.2
[65] pkgbuild_1.4.2 glue_1.6.2 EBImage_4.40.1 TrajectoryUtils_1.6.0
[69] monocle3_1.3.5 ggsignif_0.6.4 httpuv_1.6.11 BiocNeighbors_1.16.0
[73] annotate_1.76.0 jsonlite_1.8.7 XVector_0.38.0 bit_4.0.5
[77] mime_0.12 princurve_2.1.6 gridExtra_2.3 gplots_3.1.3
[81] Rsamtools_2.16.0 stringi_1.7.12 processx_3.8.2 RcppRoll_0.3.0
[85] spatstat.sparse_3.0-2 scattermore_1.2 spatstat.explore_3.2-1 yulab.utils_0.0.9
[89] bitops_1.0-7 cli_3.6.1 rhdf5filters_1.10.1 RSQLite_2.3.1
[93] pheatmap_1.0.12 timechange_0.3.0 org.Mm.eg.db_3.16.0 rstudioapi_0.15.0
[97] fftwtools_0.9-11 nlme_3.1-162 qvalue_2.30.0 fastcluster_1.2.6
[101] locfit_1.5-9.8 listenv_0.9.0 miniUI_0.1.1.1 leidenbase_0.1.27
[105] gridGraphics_0.5-1 R.oo_1.25.0 urlchecker_1.0.1 dbplyr_2.3.3
[109] sessioninfo_1.2.2 lifecycle_1.0.3 munsell_0.5.0 R.methodsS3_1.8.2
[113] ggsci_3.0.0 visNetwork_2.1.2 caTools_1.18.2 codetools_0.2-19
[117] magic_1.6-1 ggSCvis_0.0.2 vipor_0.4.7 lmtest_0.9-40
[121] msigdbr_7.5.1 xtable_1.8-4 ROCR_1.0-11 BiocManager_1.30.21.1
[125] Signac_1.10.0 abind_1.4-5 farver_2.1.1 parallelly_1.36.0
[129] RANN_2.6.1 aplot_0.2.0 tiff_0.1-12 sparsesvd_0.2-2
[133] parallelDist_0.2.6 ggtree_3.9.1 philentropy_0.8.0 RcppAnnoy_0.0.21
[137] goftest_1.2-3 packcircles_0.3.6 ggdendro_0.1.23 profvis_0.3.8
[141] cluster_2.1.4 future.apply_1.11.0 tidytree_0.4.5 ellipsis_0.3.2
[145] prettyunits_1.1.1 ggridges_0.5.4 igraph_1.5.1 fgsea_1.24.0
[149] slam_0.1-50 remotes_2.4.2.1 spatstat.utils_3.0-3 geometry_0.4.7
[153] htmltools_0.5.6 BiocFileCache_2.6.1 utf8_1.2.3 plotly_4.10.2
[157] XML_3.99-0.14 withr_2.5.0 fitdistrplus_1.1-11 BiocParallel_1.32.6
[161] bit64_4.0.5 foreach_1.5.2 Biostrings_2.66.0 combinat_0.0-8
[165] progressr_0.14.0 GOSemSim_2.24.0 data.tree_1.1.0 rsvd_1.0.5
[169] ScaledMatrix_1.6.0 devtools_2.4.5 memoise_2.0.1 RApiSerialize_0.1.2
[173] tzdb_0.4.0 callr_3.7.3 ps_1.7.5 curl_5.0.2
[177] DiagrammeR_1.0.11 fansi_1.0.4 fastDummies_1.7.3 GSEABase_1.60.0
[181] tensor_1.5 CellTrek_0.0.94 renv_1.0.2 cachem_1.0.8
[185] desc_1.4.2 randomForestSRC_3.2.3 deldir_1.0-9 HDO.db_0.99.1
[189] babelgene_22.9 rjson_0.2.21 rstatix_0.7.2 ggrepel_0.9.3
[193] rprojroot_2.0.3 clue_0.3-64 tools_4.2.1 magrittr_2.0.3
[197] RCurl_1.98-1.12 car_3.1-2 ape_5.7-1 ggplotify_0.1.2
[201] xml2_1.3.5 httr_1.4.7 boot_1.3-28.1 globals_0.16.2
[205] R6_2.5.1 Rhdf5lib_1.20.0 RcppHNSW_0.6.0 progress_1.2.2
[209] KEGGREST_1.38.0 treeio_1.25.4 gtools_3.9.4 shape_1.4.6
[213] akima_0.6-3.4 beachmat_2.14.2 HDF5Array_1.26.0 BiocSingular_1.14.0
[217] ggrastr_1.0.2 rhdf5_2.42.1 carData_3.0-5 ggfun_0.1.2
[221] colorspace_2.1-0 generics_0.1.3 pillar_1.9.0 tweenr_2.0.2
[225] HSMMSingleCell_1.18.0 R.cache_0.16.0 GenomeInfoDbData_1.2.9 plyr_1.8.8
[229] dotCall64_1.0-2 gtable_0.3.4 stringfish_0.16.0 ComplexHeatmap_2.15.4
[233] shadowtext_0.1.2 biomaRt_2.54.1 fastmap_1.1.1 doParallel_1.0.17
[237] broom_1.0.5 filelock_1.0.2 backports_1.4.1 lme4_1.1-35.1
[241] enrichplot_1.18.4 hms_1.1.3 ggforce_0.4.1 Rtsne_0.16
[245] shiny_1.7.5 polyclip_1.10-4 grid_4.2.1 numDeriv_2016.8-1.1
[249] lazyeval_0.2.2 dynamicTreeCut_1.63-1 crayon_1.5.2 MASS_7.3-60
[253] downloader_0.4 sparseMatrixStats_1.10.0 viridis_0.6.5 compiler_4.2.1
[257] spatstat.geom_3.2-4
Looking for your reply,
Best wishes!
MikeDMorgan commentedon Mar 24, 2024
The simplest solution is that you don't need to calculate nhood distances any more. Use the newer
refinement_scheme="graph"
formakeNhoods
andfdr.weighting="graph-overlap"
fortestNhoods
.boluofen commentedon Sep 4, 2024
It's not work for me, the same error still comes up.
R version 4.3.1 (2023-06-16)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.6 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: Asia/Shanghai
tzcode source: system (glibc)
attached base packages:
[1] grid stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] miloR_2.0.0 scales_1.3.0 scater_1.28.0
[4] scuttle_1.10.3 SeuratWrappers_0.3.5 Seurat_5.1.0
[7] ggpubr_0.6.0 ggbeeswarm_0.7.2 MASS_7.3-60.0.1
[10] viridis_0.6.5 viridisLite_0.4.2 ggforce_0.4.2
[13] ggrepel_0.9.5 patchwork_1.2.0 ggh4x_0.2.8
[16] lubridate_1.9.3 forcats_1.0.0 purrr_1.0.2
[19] tibble_3.2.1 tidyverse_2.0.0 circlize_0.4.16
[22] ComplexHeatmap_2.16.0 enrichplot_1.20.3 stringr_1.5.1
[25] tidyr_1.3.1 COSG_0.9.0 AUCell_1.22.0
[28] MAST_1.26.0 edgeR_3.42.4 DESeq2_1.40.2
[31] limma_3.56.2 GSEABase_1.62.0 graph_1.78.0
[34] annotate_1.78.0 XML_3.99-0.16.1 GSVA_1.48.3
[37] org.Hs.eg.db_3.17.0 AnnotationDbi_1.62.2 gplots_3.1.3.1
[40] clusterProfiler_4.8.3 data.table_1.15.4 fgsea_1.26.0
[43] readr_2.1.5 Hmisc_5.1-3 ggsci_3.2.0
[46] gtools_3.9.5 ggalluvial_0.12.5 NMF_0.27
[49] cluster_2.1.6 rngtools_1.5.2 registry_0.5-1
[52] igraph_2.0.3 qs_0.26.3 clustree_0.5.1
[55] ggraph_2.2.1 dplyr_1.1.4 ggplot2_3.5.1
[58] SeuratObject_5.0.2 sp_2.1-4 monocle3_1.3.7
[61] SingleCellExperiment_1.22.0 SummarizedExperiment_1.30.2 GenomicRanges_1.52.1
[64] GenomeInfoDb_1.36.4 IRanges_2.34.1 S4Vectors_0.38.2
[67] MatrixGenerics_1.12.3 matrixStats_1.4.0 bigmemory_4.6.4
[70] Biobase_2.60.0 BiocGenerics_0.46.0
loaded via a namespace (and not attached):
[1] ica_1.0-3 plotly_4.10.4 Formula_1.2-5
[4] devtools_2.4.5 zlibbioc_1.46.0 tidyselect_1.2.1
[7] bit_4.0.5 doParallel_1.0.17 clue_0.3-65
[10] lattice_0.22-6 rjson_0.2.21 blob_1.2.4
[13] urlchecker_1.0.1 S4Arrays_1.2.0 parallel_4.3.1
[16] png_0.1-8 cli_3.6.3 ggplotify_0.1.2
[19] goftest_1.2-3 BiocNeighbors_1.18.0 uwot_0.2.2
[22] shadowtext_0.1.4 curl_5.2.1 mime_0.12
[25] evaluate_0.24.0 tidytree_0.4.6 leiden_0.4.3.1
[28] stringi_1.8.4 backports_1.5.0 desc_1.4.3
[31] httpuv_1.6.15 magrittr_2.0.3 splines_4.3.1
[34] RApiSerialize_0.1.3 sctransform_0.4.1 sessioninfo_1.2.2
[37] DBI_1.2.3 HDF5Array_1.28.1 withr_3.0.1
[40] lmtest_0.9-40 tidygraph_1.3.1 BiocManager_1.30.23
[43] htmlwidgets_1.6.4 fs_1.6.4 reticulate_1.38.0
[46] zoo_1.8-12 XVector_0.40.0 knitr_1.48
[49] timechange_0.3.0 foreach_1.5.2 fansi_1.0.6
[52] caTools_1.18.2 ggtree_3.8.2 rhdf5_2.44.0
[55] R.oo_1.26.0 RSpectra_0.16-2 irlba_2.3.5.1
[58] fastDummies_1.7.3 gridGraphics_0.5-1 ellipsis_0.3.2
[61] lazyeval_0.2.2 survival_3.7-0 scattermore_1.2
[64] crayon_1.5.3 RcppAnnoy_0.0.22 RColorBrewer_1.1-3
[67] progressr_0.14.0 tweenr_2.0.3 later_1.3.2
[70] ggridges_0.5.6 codetools_0.2-20 base64enc_0.1-3
[73] GlobalOptions_0.1.2 profvis_0.3.8 KEGGREST_1.40.1
[76] Rtsne_0.17 shape_1.4.6.1 foreign_0.8-87
[79] pkgconfig_2.0.3 spatstat.univar_3.0-0 aplot_0.2.3
[82] spatstat.sparse_3.1-0 ape_5.8 gridBase_0.4-7
[85] xtable_1.8-4 Genshinpalette_0.0.1.9000 car_3.1-2
[88] plyr_1.8.9 httr_1.4.7 tools_4.3.1
[91] globals_0.16.3 pkgbuild_1.4.4 beeswarm_0.4.0
[94] htmlTable_2.4.3 broom_1.0.6 checkmate_2.3.2
[97] nlme_3.1-165 HDO.db_0.99.1 lme4_1.1-35.5
[100] digest_0.6.36 numDeriv_2016.8-1.1 Matrix_1.6-5
[103] farver_2.1.2 tzdb_0.4.0 reshape2_1.4.4
[106] yulab.utils_0.1.5 rpart_4.1.23 glue_1.7.0
[109] cachem_1.1.0 polyclip_1.10-7 generics_0.1.3
[112] Biostrings_2.68.1 parallelly_1.38.0 pkgload_1.4.0
[115] RcppHNSW_0.6.0 ScaledMatrix_1.8.1 carData_3.0-5
[118] minqa_1.2.7 pbapply_1.7-2 job_0.3.1
[121] spam_2.10-0 gson_0.1.0 utf8_1.2.4
[124] graphlayouts_1.1.1 ggsignif_0.6.4 gridExtra_2.3
[127] shiny_1.9.1 GenomeInfoDbData_1.2.10 R.utils_2.12.3
[130] rhdf5filters_1.12.1 RCurl_1.98-1.16 memoise_2.0.1
[133] rmarkdown_2.27 downloader_0.4 R.methodsS3_1.8.2
[136] future_1.34.0 RANN_2.6.1 stringfish_0.16.0
[139] bigmemory.sri_0.1.8 spatstat.data_3.1-2 rstudioapi_0.16.0
[142] spatstat.utils_3.0-5 hms_1.1.3 fitdistrplus_1.2-1
[145] munsell_0.5.1 cowplot_1.1.3 colorspace_2.1-1
[148] rlang_1.1.4 DelayedMatrixStats_1.22.6 sparseMatrixStats_1.12.2
[151] dotCall64_1.1-1 xfun_0.46 remotes_2.5.0
[154] iterators_1.0.14 abind_1.4-5 GOSemSim_2.26.1
[157] treeio_1.24.3 Rhdf5lib_1.22.1 bitops_1.0-8
[160] ps_1.7.7 promises_1.3.0 scatterpie_0.2.3
[163] RSQLite_2.3.7 qvalue_2.32.0 DelayedArray_0.26.7
[166] GO.db_3.17.0 compiler_4.3.1 boot_1.3-30
[169] beachmat_2.16.0 listenv_0.9.1 Rcpp_1.0.13
[172] BiocSingular_1.16.0 tensor_1.5 usethis_3.0.0
[175] uuid_1.2-1 BiocParallel_1.34.2 spatstat.random_3.3-1
[178] R6_2.5.1 fastmap_1.2.0 fastmatch_1.1-4
[181] rstatix_0.7.2 vipor_0.4.7 ROCR_1.0-11
[184] rsvd_1.0.5 nnet_7.3-19 gtable_0.3.5
[187] KernSmooth_2.23-24 miniUI_0.1.1.1 deldir_2.0-4
[190] htmltools_0.5.8.1 RcppParallel_5.1.8 bit64_4.0.5
[193] spatstat.explore_3.3-1 lifecycle_1.0.4 processx_3.8.4
[196] nloptr_2.1.1 callr_3.7.6 vctrs_0.6.5
[199] spatstat.geom_3.3-2 DOSE_3.26.2 ggfun_0.1.5
[202] future.apply_1.11.2 pracma_2.4.4 pillar_1.9.0
[205] locfit_1.5-9.10 jsonlite_1.8.8 GetoptLong_1.0.5
MikeDMorgan commentedon Sep 9, 2024
Make sure you are using up to date versions of all relevant packages, including
Matrix
andmatrixStats
ainarill commentedon Sep 16, 2024
Hi! Facing the same issue here. When I run
data_T1_milo <- calcNhoodDistance(data_T1_milo, d=30, reduced.dim = "PCA")
I get
Error in Matrix.DeprecatedCoerce(cd1, cd2) : (converted from warning) 'as(<dgTMatrix>, "dgCMatrix")' is deprecated. Use 'as(., "CsparseMatrix")' instead. See help("Deprecated") and help("Matrix-deprecated").
My sessionInfo() is the following one:
`R version 4.4.1 (2024-06-14)
Platform: x86_64-apple-darwin20
Running under: macOS Sonoma 14.2.1
Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: Europe/Madrid
tzcode source: internal
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] Matrix_1.7-0 patchwork_1.2.0.9000 scater_1.32.1
[4] scran_1.32.0 scuttle_1.14.0 SingleCellExperiment_1.26.0
[7] SummarizedExperiment_1.34.0 Biobase_2.64.0 GenomicRanges_1.56.1
[10] GenomeInfoDb_1.40.1 IRanges_2.38.1 S4Vectors_0.42.1
[13] BiocGenerics_0.50.0 MatrixGenerics_1.16.0 matrixStats_1.4.1
[16] miloR_2.0.0 edgeR_4.2.1 limma_3.60.4
[19] GSVA_1.52.3 escape_2.1.2 RColorBrewer_1.1-3
[22] scRepertoire_2.0.5 dplyr_1.1.4 plyr_1.8.9
[25] ggplot2_3.5.1 Seurat_5.1.0 SeuratObject_5.0.2
[28] sp_2.1-4
loaded via a namespace (and not attached):
[1] spatstat.sparse_3.1-0 httr_1.4.7 numDeriv_2016.8-1.1
[4] tools_4.4.1 sctransform_0.4.1 utf8_1.2.4
[7] R6_2.5.1 HDF5Array_1.30.1 ggdist_3.3.2
[10] lazyeval_0.2.2 uwot_0.2.2 rhdf5filters_1.14.1
[13] withr_3.0.1 gridExtra_2.3 progressr_0.14.0
[16] quantreg_5.98 cli_3.6.3 textshaping_0.4.0
[19] spatstat.explore_3.3-2 fastDummies_1.7.4 iNEXT_3.0.1
[22] labeling_0.4.3 spatstat.data_3.1-2 ggridges_0.5.6
[25] pbapply_1.7-2 systemfonts_1.1.0 R.utils_2.12.3
[28] stringdist_0.9.12 parallelly_1.38.0 VGAM_1.1-11
[31] rstudioapi_0.16.0 RSQLite_2.3.7 generics_0.1.3
[34] gtools_3.9.5 ica_1.0-3 spatstat.random_3.3-1
[37] distributional_0.4.0 ggbeeswarm_0.7.2 fansi_1.0.6
[40] abind_1.4-5 R.methodsS3_1.8.2 lifecycle_1.0.4
[43] yaml_2.3.10 rhdf5_2.46.1 SparseArray_1.4.8
[46] Rtsne_0.17 grid_4.4.1 blob_1.2.4
[49] dqrng_0.4.1 promises_1.3.0 crayon_1.5.3
[52] miniUI_0.1.1.1 lattice_0.22-6 msigdbr_7.5.1
[55] beachmat_2.20.0 cowplot_1.1.3 annotate_1.80.0
[58] KEGGREST_1.44.1 magick_2.8.4 metapod_1.12.0
[61] pillar_1.9.0 knitr_1.48 rjson_0.2.22
[64] future.apply_1.11.2 codetools_0.2-20 leiden_0.4.3.1
[67] glue_1.7.0 spatstat.univar_3.0-0 data.table_1.16.0
[70] vctrs_0.6.5 png_0.1-8 spam_2.10-0
[73] gtable_0.3.5 assertthat_0.2.1 cachem_1.1.0
[76] xfun_0.47 S4Arrays_1.4.1 mime_0.12
[79] tidygraph_1.3.1 survival_3.7-0 bluster_1.14.0
[82] statmod_1.5.0 fitdistrplus_1.2-1 ROCR_1.0-11
[85] nlme_3.1-166 bit64_4.0.5 RcppAnnoy_0.0.22
[88] evd_2.3-7 irlba_2.3.5.1 vipor_0.4.7
[91] KernSmooth_2.23-24 colorspace_2.1-1 DBI_1.2.3
[94] UCell_2.6.2 ggrastr_1.0.2 tidyselect_1.2.1
[97] bit_4.0.5 compiler_4.4.1 AUCell_1.24.0
[100] graph_1.80.0 BiocNeighbors_1.22.0 SparseM_1.84-2
[103] ggdendro_0.2.0 DelayedArray_0.30.1 plotly_4.10.4
[106] scales_1.3.0 lmtest_0.9-40 SpatialExperiment_1.12.0
[109] stringr_1.5.1 digest_0.6.37 goftest_1.2-3
[112] spatstat.utils_3.1-0 rmarkdown_2.28 XVector_0.44.0
[115] htmltools_0.5.8.1 pkgconfig_2.0.3 sparseMatrixStats_1.16.0
[118] fastmap_1.2.0 rlang_1.1.4 htmlwidgets_1.6.4
[121] UCSC.utils_1.0.0 DelayedMatrixStats_1.26.0 shiny_1.9.1
[124] farver_2.1.2 zoo_1.8-12 jsonlite_1.8.8
[127] BiocParallel_1.38.0 R.oo_1.26.0 BiocSingular_1.20.0
[130] magrittr_2.0.3 GenomeInfoDbData_1.2.12 dotCall64_1.1-1
[133] Rhdf5lib_1.24.2 munsell_0.5.1 Rcpp_1.0.13
[136] evmix_2.12 babelgene_22.9 viridis_0.6.5
[139] reticulate_1.38.0 truncdist_1.0-2 stringi_1.8.4
[142] ggalluvial_0.12.5 ggraph_2.2.1 zlibbioc_1.50.0
[145] MASS_7.3-61 parallel_4.4.1 listenv_0.9.1
[148] ggrepel_0.9.5 deldir_2.0-4 Biostrings_2.72.1
[151] graphlayouts_1.1.1 splines_4.4.1 tensor_1.5
[154] locfit_1.5-9.10 igraph_2.0.3 spatstat.geom_3.3-2
[157] cubature_2.1.1 RcppHNSW_0.6.0 reshape2_1.4.4
[160] ScaledMatrix_1.12.0 XML_3.99-0.17 evaluate_0.24.0
[163] tweenr_2.0.3 httpuv_1.6.15 MatrixModels_0.5-3
[166] RANN_2.6.2 tidyr_1.3.1 purrr_1.0.2
[169] polyclip_1.10-7 future_1.34.0 scattermore_1.2
[172] ggforce_0.4.2 rsvd_1.0.5 xtable_1.8-4
[175] RSpectra_0.16-2 later_1.3.2 ggpointdensity_0.1.0
[178] viridisLite_0.4.2 ragg_1.3.2 gsl_2.1-8
[181] tibble_3.2.1 memoise_2.0.1 beeswarm_0.4.0
[184] AnnotationDbi_1.66.0 cluster_2.1.6 globals_0.16.3
[187] GSEABase_1.64.0 `
And in the easiest solution that @MikeDMorgan commented about using the newer refinement_scheme="graph" for makeNhoods and fdr.weighting="graph-overlap" for testNhoods, should I just not run
calcNhoodDistance()
function and proceed with the pipeline?Thank you so much for your time and for this incredible tool,
Aina
MikeDMorgan commentedon Sep 17, 2024
Hi @ainarill , yes you no longer need to run calcNhoodDistances when using the graph-based refinement and spatial FDR correction.