Skip to content

Files

Latest commit

4d3b846 · Nov 16, 2023

History

History
252 lines (181 loc) · 5.98 KB

README.md

File metadata and controls

252 lines (181 loc) · 5.98 KB

AudioToImage

Examples

Download the demo resource

wget http://download.openmmlab.com/agentlego/cat.wav

Use the tool directly (without agent)

from agentlego.apis import load_tool

# load tool
tool = load_tool('AudioToImage', device='cuda')

# apply tool
image = tool('./cat.wav')

With Lagent

from lagent import ReAct, GPTAPI, ActionExecutor
from agentlego.apis import load_tool

# load tools and build agent
# please set `OPENAI_API_KEY` in your environment variable.
tool = load_tool('AudioToImage', device='cuda').to_lagent()
agent = ReAct(GPTAPI(temperature=0.), action_executor=ActionExecutor([tool]))

# agent running with the tool.
ret = agent.chat(f'Please generate an image according to the audio at `cat.wav`')
for step in ret.inner_steps[1:]:
    print('------')
    print(step['content'])

Set up

Before using the tool, please confirm you have installed the related dependencies by the below commands.

pip install timm ftfy iopath diffusers pytorchvideo

Reference

This tool uses a ImageBind model. See the following paper for details.

@misc{girdhar2023imagebind,
      title={ImageBind: One Embedding Space To Bind Them All},
      author={Rohit Girdhar and Alaaeldin El-Nouby and Zhuang Liu and Mannat Singh and Kalyan Vasudev Alwala and Armand Joulin and Ishan Misra},
      year={2023},
      eprint={2305.05665},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

ThermalToImage

Examples

Download the demo resource

wget http://download.openmmlab.com/agentlego/thermal.jpg

Use the tool directly (without agent)

from agentlego.apis import load_tool

# load tool
tool = load_tool('ThermalToImage', device='cuda')

# apply tool
image = tool('thermal.jpg')

With Lagent

from lagent import ReAct, GPTAPI, ActionExecutor
from agentlego.apis import load_tool

# load tools and build agent
# please set `OPENAI_API_KEY` in your environment variable.
tool = load_tool('ThermalToImage', device='cuda').to_lagent()
agent = ReAct(GPTAPI(temperature=0.), action_executor=ActionExecutor([tool]))

# agent running with the tool.
ret = agent.chat(f'Please generate an image according to the thermal image at `thermal.jpg`')
for step in ret.inner_steps[1:]:
    print('------')
    print(step['content'])

Set up

Before using the tool, please confirm you have installed the related dependencies by the below commands.

pip install timm ftfy iopath diffusers

Reference

This tool uses a ImageBind model. See the following paper for details.

@misc{girdhar2023imagebind,
      title={ImageBind: One Embedding Space To Bind Them All},
      author={Rohit Girdhar and Alaaeldin El-Nouby and Zhuang Liu and Mannat Singh and Kalyan Vasudev Alwala and Armand Joulin and Ishan Misra},
      year={2023},
      eprint={2305.05665},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

AudioImageToImage

Examples

Download the demo resource

wget http://download.openmmlab.com/agentlego/dog.jpg
wget http://download.openmmlab.com/agentlego/cat.wav

Use the tool directly (without agent)

from agentlego.apis import load_tool

# load tool
tool = load_tool('AudioImageToImage', device='cuda')

# apply tool
image = tool('dog.jpg', 'cat.wav')

With Lagent

from lagent import ReAct, GPTAPI, ActionExecutor
from agentlego.apis import load_tool

# load tools and build agent
# please set `OPENAI_API_KEY` in your environment variable.
tool = load_tool('AudioImageToImage', device='cuda').to_lagent()
agent = ReAct(GPTAPI(temperature=0.), action_executor=ActionExecutor([tool]))

# agent running with the tool.
ret = agent.chat(f'Please generate an image according to the audio `cat.wav` and image `dog.jpg`.')
for step in ret.inner_steps[1:]:
    print('------')
    print(step['content'])

Set up

Before using the tool, please confirm you have installed the related dependencies by the below commands.

pip install timm ftfy iopath diffusers pytorchvideo

Reference

This tool uses a ImageBind model. See the following paper for details.

@misc{girdhar2023imagebind,
      title={ImageBind: One Embedding Space To Bind Them All},
      author={Rohit Girdhar and Alaaeldin El-Nouby and Zhuang Liu and Mannat Singh and Kalyan Vasudev Alwala and Armand Joulin and Ishan Misra},
      year={2023},
      eprint={2305.05665},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

AudioTextToImage

Examples

Download the demo resource

wget http://download.openmmlab.com/agentlego/cat.wav

Use the tool directly (without agent)

from agentlego.apis import load_tool

# load tool
tool = load_tool('AudioTextToImage', device='cuda')

# apply tool
image = tool('cat.wav', 'flying in the sky')

With Lagent

from lagent import ReAct, GPTAPI, ActionExecutor
from agentlego.apis import load_tool

# load tools and build agent
# please set `OPENAI_API_KEY` in your environment variable.
tool = load_tool('AudioTextToImage', device='cuda').to_lagent()
agent = ReAct(GPTAPI(temperature=0.), action_executor=ActionExecutor([tool]))

# agent running with the tool.
ret = agent.chat(f'Please generate an image according to the audio `cat.wav`, and it should fly in the sky.')
for step in ret.inner_steps[1:]:
    print('------')
    print(step['content'])

Set up

Before using the tool, please confirm you have installed the related dependencies by the below commands.

pip install timm ftfy iopath diffusers pytorchvideo

Reference

This tool uses a ImageBind model. See the following paper for details.

@misc{girdhar2023imagebind,
      title={ImageBind: One Embedding Space To Bind Them All},
      author={Rohit Girdhar and Alaaeldin El-Nouby and Zhuang Liu and Mannat Singh and Kalyan Vasudev Alwala and Armand Joulin and Ishan Misra},
      year={2023},
      eprint={2305.05665},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}