Skip to content

Numerical analysis toolbox, including interpolation, fitting, numerical integration, iterative solution of linear/nonlinear equations, solution of ordinary differential equations.

Notifications You must be signed in to change notification settings

EZ4BYG/Num_Func

Folders and files

NameName
Last commit message
Last commit date

Latest commit

d135322 · Oct 8, 2020

History

47 Commits
Oct 8, 2020
Apr 27, 2019
Apr 16, 2019
Apr 5, 2019
Apr 5, 2019
Apr 5, 2019
Oct 6, 2020
Apr 5, 2019
Apr 17, 2019
Apr 7, 2019
Apr 7, 2019
Apr 5, 2019
Apr 7, 2019
Apr 7, 2019
Apr 7, 2019
Apr 15, 2019
Apr 7, 2019
Apr 5, 2019
Apr 5, 2019
Apr 5, 2019
Apr 7, 2019
Apr 6, 2019
Apr 15, 2019
Apr 15, 2019
Apr 15, 2019
Apr 15, 2019
Apr 7, 2019
Apr 15, 2019
Apr 7, 2019
Apr 7, 2019
Apr 27, 2019
Apr 27, 2019
Apr 27, 2019
Apr 5, 2019
Apr 5, 2019
Apr 5, 2019

Repository files navigation

NumFunc

Contents: Numerical analysis toolbox and iterative solution toolbox for linear/nonlinear equations

Time: 2019.04.06

Update1: Programs about some common interpolation and fitting

  • Lagrange interpolation: 2-points, 3-points, n-points; Runge's phenomenon —— lagra_2points.m, largra_3points.m, lagra_npoints.m and Runge.m
  • Newton interpolation: 2-points, 3-points, n-points —— New_2points.m, New_3points.m and New_npoints.m
  • Piecewise-linear Lagrangian interpolation —— fenduan_linear.m
  • Unary nonlinear fitting —— nonlinear_fitting.m
  • More detailed interpretation about Interpolation: https://www.jianshu.com/p/add2e938271c
  • More detailed interpretation about Fitting: https://www.jianshu.com/p/41caace02f39

Time:2019.04.07

Update2: Programs about Numerical intergration

  • Lagrangian quadrature(basic): Trapezoidal formula, Simpson formula, Newton-Coates formula —— trapezoid.m, simpson.m and newton_cotes.m
  • Lagrangian quadrature(intermediate): Composite trapezoid formula, Composite Simpson formula —— f_trapezoid.m and f_simpson.m
  • Lagrangian quadrature(advanced): Composite trapezoidal encryption formula, Romberg quadrature formula —— jm_f_trapezoid.m and romberg_js.m
  • Gauss quadrature: Gauss-Legendre, Gauss-Laguerre, Gauss-Hermite —— gauss_legendre2.m, gauss_laguerre.m, gauss_hermite.m
  • You can see more detailed interpretation from my blog: https://www.jianshu.com/p/c6fdfe11e6bc

Time:2019.04.15

Update3:Programs about iterative solution for linear equations

  • Original iteration methods: Jacobi iteration, Gauss-Seidel iteration, super-relaxation iteration —— jacobian_iteration.m, seidel_iteration.m, relaxation_iteration.m
  • Universal iteration method after preprocessing(Recommand!):pre-Gauss-Seidel iteration, pre-super-relaxation iteration —— pre_seidel.m, pre_relaxation.m
  • Matrix diagonal maximization preprocessing: This is not a panacea, but it can improve the convergence probability of iterative methods! —— diagonal_maximization.m
  • Reference: Jacobi和Gauss-Seidel迭代法的预处理
  • You can see more detailed interpretation from my blog: https://www.jianshu.com/p/e14d9e910984

Time:2019.04.16

Update4: Using the least square approximate solution to solve overdetermined incompatible linear equations

Time:2019.04.27

Update5: Using generalized plus inverse matrix to solve linear equations

  • The full-rank decomposition of any matrix —— FRD.M
  • The linear equation has no solution(Condition1): using the generalized plus inverse to find *all least squares solutions and unique minimal-norm least squares solution —— wujie.m
  • The linear equation has infinite solutions(Condition2): using the generalized plus inverse to find general solutions and unique minimal-norm solution —— wuqiongjie.m
  • The linear equation has only one solution(Condition3): using the generalized plus inverse to find out the unique solution —— weiyijie.m
  • You can see more detailed interpretation from my blog: https://www.jianshu.com/p/8777e5d11a03

Time:2019.05.05

Update6: The solution methods of the nonlinear equations. The programs are in the Nonlinear_Equations folder.

  • Original Newton method + pre-Gauss-Seidel iteration —— niudun.m and pre_seidel.m
  • Modified Newton method —— xzniudun.m
  • Quasi-Newton Method(single rank inverse Broyden Ⅰ) —— nbroyden1.m
  • Quasi-Newton Method(single rank inverse Broyden Ⅱ) —— nbroyden2.m
  • Quasi-Newton Method(rank-two BFS) —— BFS.m
  • You can see more detailed interpretation from my blog: https://www.jianshu.com/p/4e2d6a45aa67

数值分析和方程求解

内容:数值分析相关程序包括插值、拟合、数值积分;方程求解包括线性方程组迭代求解、非线性方程(组)求解、常微分方程数值解

时间:2019.04.06

更新1:多项式插值相关程序;最小二乘一元非线性拟合程序。

  • 拉格朗日插值:2点、3点、n点拉格朗日插值、龙格现象(文件名:lagra_2points.m、largra_3points.m、lagra_npoints.m、Runge.m);
  • 牛顿插值:2点、3点、n点牛顿插值(文件名:New_2points.m、New_3points.m、New_npoints.m);
  • 分段线性拉格朗日插值(文件名:fenduan_linear.m);
  • 一元非线性拟合(文件名:nonlinear_fitting.m)。
  • 插值说明参考这里拟合说明参考这里

时间:2019.04.07

更新2:数值积分相关程序。

  • 拉格朗日型积分(基础款):梯形公式、辛普森公式、牛顿-科茨公式(文件名:trapezoid.m、simpson.m、newton_cotes.m);
  • 拉格朗日型积分(进阶款):复化梯形公式、复化辛普森公式(文件名:f_trapezoid.m、f_simpson.m);
  • 拉格朗日型积分(高级款):复化梯形加密公式、龙贝格公式(文件名:jm_f_trapezoid.m、romberg_js.m);
  • 高斯型积分公式:高斯-勒让德、高斯-拉盖尔、高斯-埃尔米特;包括插值节点和系数的求取,以及实例(文件名:gauss_legendre2.m、gauss_laguerre.m、gauss_hermite.m)。
  • 相关说明参考这里

时间:2019.04.15

更新3:线性方程组迭代求解相关程序。

  • 未预处理原始迭代方法:雅克比迭代、高斯-赛德尔迭代、(超)松弛迭代(文件名:jacobian_iteration.m、seidel_iteration.m、relaxation_iteration.m);
  • 预处理万能迭代方法(推荐√):预处理后万能高斯-赛德尔迭代、预处理后万能(超)松弛迭代(文件名:pre_seidel.m、pre_relaxation.m)。
  • 对角最大化预处理:非万能,但还是可以提高迭代收敛的几率,值得参考(文件名: diagonal_maximization.m)
  • 预处理参考文献:《Jacobi和Gauss-Seidel迭代法的预处理》
  • 相关说明参考这里

时间:2019.04.16

更新4:超定不相容线性方程组最小二乘近似解

时间:2019.04.27

更新5:广义加号逆矩阵求解线性方程组

  • 任意矩阵的满秩分解(文件名:FRD.m);
  • 线性方程组无解:广义加号逆求全部最小二乘解和唯一极小范数最小二乘解(文件名:wujie.m);
  • 线性方程组无穷解:广义加号逆求通解唯一极小范数解(文件名:wuqiongjie.m);
  • 线性方程组唯一解:广义加号逆求唯一解(文件名:weiyijie.m);
  • 相关说明参考这里

时间:2019.05.05

更新6:非线性方法组的求解方法,详见文件夹Nonlinear_Equations

  • 原始牛顿法(文件名:niudun.m),辅助求解线性方法组的万能高斯-赛德尔迭代函数(pre_seidel.m);
  • 修正牛顿法(文件名:xzniudun.m);
  • 拟牛顿法_逆Broyden秩1法(nbroyden1.m);
  • 拟牛顿法_逆Broyden秩1第二方法(nbroyden2.m);
  • 拟牛顿法_BFS秩2法(BFS.m);
  • 相关说明参考这里

About

Numerical analysis toolbox, including interpolation, fitting, numerical integration, iterative solution of linear/nonlinear equations, solution of ordinary differential equations.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages