Garrick Aden-Buie – @grrrck – garrickadenbuie.com. Set operations contributed by Tyler Grant Smith.
-
Mutating Joins:
inner_join()
,left_join()
,right_join()
,full_join()
-
Filtering Joins:
semi_join()
,anti_join()
-
Set Operations:
union()
,union_all()
,intersect()
,setdiff()
-
Learn more about
Please feel free to use these images for teaching or learning about action verbs from the tidyverse. You can directly download the original animations or static images in svg or png formats, or you can use the scripts to recreate the images locally.
Currently, the animations cover the dplyr two-table verbs and I’d like to expand the animations to include more verbs from the tidyverse. Suggestions are welcome!
x
#> # A tibble: 3 x 2
#> id x
#> <int> <chr>
#> 1 1 x1
#> 2 2 x2
#> 3 3 x3
y
#> # A tibble: 3 x 2
#> id y
#> <int> <chr>
#> 1 1 y1
#> 2 2 y2
#> 3 4 y4
All rows from
x
where there are matching values iny
, and all columns fromx
andy
.
inner_join(x, y, by = "id")
#> # A tibble: 2 x 3
#> id x y
#> <int> <chr> <chr>
#> 1 1 x1 y1
#> 2 2 x2 y2
All rows from
x
, and all columns fromx
andy
. Rows inx
with no match iny
will haveNA
values in the new columns.
left_join(x, y, by = "id")
#> # A tibble: 3 x 3
#> id x y
#> <int> <chr> <chr>
#> 1 1 x1 y1
#> 2 2 x2 y2
#> 3 3 x3 <NA>
… If there are multiple matches between
x
andy
, all combinations of the matches are returned.
y_extra # has multiple rows with the key from `x`
#> # A tibble: 4 x 2
#> id y
#> <dbl> <chr>
#> 1 1 y1
#> 2 2 y2
#> 3 4 y4
#> 4 2 y5
left_join(x, y_extra, by = "id")
#> # A tibble: 4 x 3
#> id x y
#> <dbl> <chr> <chr>
#> 1 1 x1 y1
#> 2 2 x2 y2
#> 3 2 x2 y5
#> 4 3 x3 <NA>
All rows from y, and all columns from
x
andy
. Rows iny
with no match inx
will haveNA
values in the new columns.
right_join(x, y, by = "id")
#> # A tibble: 3 x 3
#> id x y
#> <int> <chr> <chr>
#> 1 1 x1 y1
#> 2 2 x2 y2
#> 3 4 <NA> y4
All rows and all columns from both
x
andy
. Where there are not matching values, returnsNA
for the one missing.
full_join(x, y, by = "id")
#> # A tibble: 4 x 3
#> id x y
#> <int> <chr> <chr>
#> 1 1 x1 y1
#> 2 2 x2 y2
#> 3 3 x3 <NA>
#> 4 4 <NA> y4
All rows from
x
where there are matching values iny
, keeping just columns fromx
.
semi_join(x, y, by = "id")
#> # A tibble: 2 x 2
#> id x
#> <int> <chr>
#> 1 1 x1
#> 2 2 x2
All rows from
x
where there are not matching values iny
, keeping just columns fromx
.
anti_join(x, y, by = "id")
#> # A tibble: 1 x 2
#> id x
#> <int> <chr>
#> 1 3 x3
x
#> # A tibble: 3 x 2
#> x y
#> <chr> <chr>
#> 1 1 a
#> 2 1 b
#> 3 2 a
y
#> # A tibble: 2 x 2
#> x y
#> <chr> <chr>
#> 1 1 a
#> 2 2 b
All unique rows from
x
andy
.
union(x, y)
#> # A tibble: 4 x 2
#> x y
#> <chr> <chr>
#> 1 2 b
#> 2 2 a
#> 3 1 b
#> 4 1 a
union(y, x)
#> # A tibble: 4 x 2
#> x y
#> <chr> <chr>
#> 1 2 a
#> 2 1 b
#> 3 2 b
#> 4 1 a
All rows from
x
andy
, keeping duplicates.
union_all(x, y)
#> # A tibble: 5 x 2
#> x y
#> <chr> <chr>
#> 1 1 a
#> 2 1 b
#> 3 2 a
#> 4 1 a
#> 5 2 b
Common rows in both
x
andy
, keeping just unique rows.
intersect(x, y)
#> # A tibble: 1 x 2
#> x y
#> <chr> <chr>
#> 1 1 a
All rows from
x
which are not also rows iny
, keeping just unique rows.
setdiff(x, y)
#> # A tibble: 2 x 2
#> x y
#> <chr> <chr>
#> 1 1 b
#> 2 2 a
setdiff(y, x)
#> # A tibble: 1 x 2
#> x y
#> <chr> <chr>
#> 1 2 b
The Relational Data chapter of the R for Data Science book by Garrett Grolemund and Hadley Wickham is an excellent resource for learning more about relational data.
The dplyr two-table verbs vignette and Jenny Bryan’s Cheatsheet for dplyr join functions are also great resources.
The animations were made possible by the newly re-written gganimate package by Thomas Lin Pedersen (original by Dave Robinson). The package readme provides an excellent (and quick) introduction to gganimte.