Skip to content

R package for modeling single cell UMI expression data using regularized negative binomial regression

License

Notifications You must be signed in to change notification settings

satijalab/sctransform

Folders and files

NameName
Last commit message
Last commit date

Latest commit

8efb692 · Oct 19, 2023
Oct 18, 2023
Mar 3, 2021
Sep 19, 2023
Sep 18, 2023
Sep 19, 2023
Jan 29, 2023
Jun 16, 2021
Jan 12, 2023
Dec 15, 2020
Dec 18, 2020
Oct 19, 2023
Jul 19, 2018
Jan 8, 2022
Oct 19, 2023
Sep 21, 2022
Aug 19, 2022

Repository files navigation

sctransform

R package for normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression

The sctransform package was developed by Christoph Hafemeister in Rahul Satija's lab at the New York Genome Center and described in Hafemeister and Satija, Genome Biology 2019. Recent updates are described in (Choudhary and Satija, Genome Biology, 2022). Core functionality of this package has been integrated into Seurat, an R package designed for QC, analysis, and exploration of single cell RNA-seq data.

Quick start

Installation:

# Install sctransform from CRAN
install.packages("sctransform")

# Or the development version from GitHub:
remotes::install_github("satijalab/sctransform", ref="develop")

Running sctransform:

# Runnning sctransform on a UMI matrix
normalized_data <- sctransform::vst(umi_count_matrix)$y
# v2 regularization
normalized_data <- sctransform::vst(umi_count_matrix, vst.flavor="v2")$y

# Runnning sctransform on a Seurat object
seurat_object <- Seurat::SCTransform(seurat_object)
#v2 regularization
seurat_object <- Seurat::SCTransform(seurat_object, vst.flavor="v2")

Help

For usage examples see vignettes in inst/doc or use the built-in help after installation
?sctransform::vst

Available vignettes:

Please use the issue tracker if you encounter a problem

References

About

R package for modeling single cell UMI expression data using regularized negative binomial regression

Resources

License

Citation

Stars

Watchers

Forks

Packages

No packages published