Skip to content

[CVPR'23] B-spline Texture Coefficients Estimator for Screen Content Image Super-Resolution (Highlight)

License

Notifications You must be signed in to change notification settings

ByeongHyunPak/btc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ad4568e · Nov 7, 2024

History

56 Commits
Jul 26, 2024
Mar 2, 2023
Mar 2, 2023
Jun 7, 2023
Mar 2, 2023
Feb 2, 2023
Nov 7, 2024
Jun 8, 2023
Mar 2, 2023
Mar 2, 2023
Mar 2, 2023

Repository files navigation

[CVPR 2023] B-spline Texture Coefficients Estimator for Screen Content Image Super-Resolution (Highlight)

Byeonghyun Pak*, Jaewon Lee*, Kyong Hwan Jin
Daegu Gyeongbuk Institute of Science and Technology (DGIST)
CVPR 2023, Highlight

Environment

Requirements

  • Python 3
  • Pytorch 1.13.0
  • TensorboardX
  • pyyaml, numpy, tqdm, imageio

Checkpoint

  • Download a SCI1K pre-trained model: RDN-BTC

Datasets

  1. mkdir ../Data for putting the dataset folders.

  2. cd ../Data and download the datasets (SCI1K, SCID, and SIQAD) from this repo.

  3. For the additional benchmarks in Tab 6, follow Data instruction provided by this repo.

Demo

python demo.py --input [INPUT] --model [MODEL] --scale [SCALE] --output output.png --gpu [GPU]
  • [INPUT] : input image's path (e.g. --input input.png).
  • [MODEL] : to define the pre-trained model (e.g. --model rdn+btc-3rd.pth).
  • [SCALE] : arbitrary magnification (e.g. --scale 3 or --scale 6.4).
  • [GPU] : to specify the GPUS (e.g. --gpu 0).

Train

python train.py --config configs/train/[TRAIN_CONFIG] --gpu [GPU]
  • [TRAIN_CONFIG] : to define model configuration (e.g. train-rdn+btc-3rd.yaml).
  • [GPU] : to specify the GPUS (e.g. --gpu 0 or --gpu 0,1).

Train

python test.py --config configs/test/[TEST_CONFIG] --model save/[MODEL] --gpu [GPU]
  • [TEST_CONFIG] : to define test configuration (e.g. test-sci1k-02.yaml for SCI1K dataset on x2).
  • [MODEL] : to define the pre-trained model (e.g. rdn+btc-3rd/epoch_last.pth).
  • [GPU] : to specify the GPUS (e.g. --gpu 0 or --gpu 0,1).

Citation

If you find our code helpful, please cite our paper:

@inproceedings{pak2023b,
  title     = {B-spline Texture Coefficients Estimator for Screen Content Image Super-Resolution},
  author    = {Pak, Byeonghyun and Lee, Jaewon and Jin, Kyong Hwan},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages     = {10062--10071},
  year      = {2023}
}

Acknowledgements

This project is based on the following open-source projects. We thank the authors for sharing their codes.

About

[CVPR'23] B-spline Texture Coefficients Estimator for Screen Content Image Super-Resolution (Highlight)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published