Skip to content

2y7c3/Super-Resolution-Neural-Operator

Folders and files

NameName
Last commit message
Last commit date

Latest commit

92b777a · May 18, 2023

History

8 Commits
Mar 2, 2023
Mar 2, 2023
Mar 2, 2023
Mar 2, 2023
Mar 2, 2023
Mar 2, 2023
May 18, 2023
Mar 24, 2023
Mar 2, 2023
Mar 2, 2023
Mar 2, 2023
Mar 2, 2023

Repository files navigation

Super-Resolution Neural Operator

This repository contains the official implementation for SRNO introduced in the following paper:

Super-Resolution Neural Operator (CVPR 2023)

Our code is based on Ubuntu 18.04, pytorch 1.10.2, CUDA 11.3 and python 3.9.

Train

python train.py --config configs/train_edsr-sronet.yaml if you want to change encoder, please modify the yaml file

model:
  name: sronet
  args:
    encoder_spec:
      name: edsr-baseline ## or rdn
      args:
        no_upsampling: true
    width: 256
    blocks: 16

Test

Download a DIV2K pre-trained model.

Model Download
EDSR-baseline-SRNO Google Drive
RDN-SRNO Google Drive

python test.py --config configs/test_srno.yaml --model edsr-baseline_epoch-1000.pth --mcell True

Demo

python demo.py --input input.png --model save/edsr-baseline_epoch-1000.pth --scale 2 --output output.png

Citation

If you find our work useful in your research, please consider citing:

@InProceedings{Wei_2023_CVPR, 
author = {Wei, Min and Zhang, Xuesong}, 
title = {Super-Resolution Neural Operator}, 
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, 
month = {June}, 
year = {2023}, 
pages = {18247-18256}
}

Acknowledgements

This code is built on LIIF and LTE

About

Super-Resolution Neural Operator, in CVPR 2023

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages